亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Assessment of Evapotranspiration from a Noah-MP Ensemble with Multisource Products under Different Land-Cover Types over the Contiguous United States

蒸散量 土地覆盖 环境科学 封面(代数) 气候学 气象学 水文学(农业) 土地利用 地质学 地理 生态学 机械工程 生物 工程类 岩土工程
作者
Wenli Fei,Lidu Shen,Zhang Yuan,Yage Liu,Jiabing Wu,Anzhi Wang,Rongrong Cai
出处
期刊:Journal of Hydrometeorology [American Meteorological Society]
卷期号:26 (7): 895-915
标识
DOI:10.1175/jhm-d-24-0127.1
摘要

Abstract Terrestrial evapotranspiration (ET) is the total water flux transported from the soil and vegetation to the atmosphere. Accurate ET modeling can greatly facilitate water resource management and climate projection. This study focused on evaluating the performance of a Noah land surface model with multiparameterization options (Noah-MP) ensemble in simulating ET under eight main land-cover types over the contiguous United States. For this purpose, the ensemble was cross-compared with phase 2 of the North American Land Data Assimilation System (NLDAS) models, gridded upscaled flux network (FLUXNET) ET, Global Land Evaporation Amsterdam Model (GLEAM) ET, and complementary-relationship-based ET at multiyear averaged, annual, and interannual scales. At the multiyear scale, the Noah-MP ensemble mean showed overestimation and underperformed the NLDAS ensemble mean. All models exhibited more biases in deciduous forests, grasslands, croplands, and barren soil regions. At the annual scale, Noah-MP was able to capture the timings of summer ET peaks; however, it overestimated the magnitude of ET peaks in forests, grasslands, and croplands. At the interannual scale, all models performed relatively well in shrublands, grasslands, and barren regions but poorly in forests, savannas, and croplands. Among them, the Noah-MP ensemble mean performed best in forests and the NLDAS ensemble mean performed best in savannas and croplands. Sobol’ sensitivity analysis of the Noah-MP ensemble revealed that stomatal conductance dominates ET in growing seasons in forests and grasslands and runoff dominates ET in shrublands, savannas, croplands, and barren soil regions. The above findings will be beneficial to the improvement of ET-related parameterizations and the optimization of ensemble strategies. Significance Statement The Noah land surface model with multiparameterization options (Noah-MP) features multiple options for one process, while much is known about the performance of the default configuration in simulating ET. Few studies have examined how its multioption ensemble performs under different land-cover types over thirty years. This study evaluated and compared an ET-relevant multiparameterization Noah-MP ensemble with a broad range of ET products at different temporal scales over the contiguous United States. Besides, the parameterization sensitivity to the ET estimation was quantified. Our results provide a better understanding of the strengths and weaknesses of Noah-MP and point the way toward model improvement and ensemble optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxxxx完成签到,获得积分10
6秒前
6秒前
听南发布了新的文献求助10
12秒前
36秒前
42秒前
45秒前
Eileen发布了新的文献求助30
47秒前
Gigi发布了新的文献求助10
49秒前
英勇的访蕊完成签到,获得积分10
51秒前
思源应助学术混子采纳,获得10
52秒前
Gigi完成签到,获得积分10
57秒前
1分钟前
学术混子发布了新的文献求助10
1分钟前
张晓允老师完成签到,获得积分10
1分钟前
路纹婷发布了新的文献求助10
1分钟前
热情的橙汁完成签到,获得积分10
1分钟前
天天快乐应助胖子东采纳,获得10
1分钟前
916应助路纹婷采纳,获得10
1分钟前
1分钟前
1分钟前
Willow发布了新的文献求助10
1分钟前
1分钟前
1分钟前
汉堡包应助壮观小懒虫采纳,获得10
2分钟前
2分钟前
NexusExplorer应助学术混子采纳,获得10
2分钟前
2分钟前
2分钟前
Anthonywll完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
学术混子发布了新的文献求助10
2分钟前
Nini应助科研通管家采纳,获得30
2分钟前
2分钟前
2分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449971
求助须知:如何正确求助?哪些是违规求助? 4557893
关于积分的说明 14265141
捐赠科研通 4481164
什么是DOI,文献DOI怎么找? 2454700
邀请新用户注册赠送积分活动 1445487
关于科研通互助平台的介绍 1421360