Assessment of Evapotranspiration from a Noah-MP Ensemble with Multisource Products under Different Land-Cover Types over the Contiguous United States

蒸散量 土地覆盖 环境科学 封面(代数) 气候学 气象学 水文学(农业) 土地利用 地质学 地理 生态学 机械工程 生物 工程类 岩土工程
作者
Wenli Fei,Lidu Shen,Zhang Yuan,Yage Liu,Jiabing Wu,Anzhi Wang,Rongrong Cai
出处
期刊:Journal of Hydrometeorology [American Meteorological Society]
卷期号:26 (7): 895-915
标识
DOI:10.1175/jhm-d-24-0127.1
摘要

Abstract Terrestrial evapotranspiration (ET) is the total water flux transported from the soil and vegetation to the atmosphere. Accurate ET modeling can greatly facilitate water resource management and climate projection. This study focused on evaluating the performance of a Noah land surface model with multiparameterization options (Noah-MP) ensemble in simulating ET under eight main land-cover types over the contiguous United States. For this purpose, the ensemble was cross-compared with phase 2 of the North American Land Data Assimilation System (NLDAS) models, gridded upscaled flux network (FLUXNET) ET, Global Land Evaporation Amsterdam Model (GLEAM) ET, and complementary-relationship-based ET at multiyear averaged, annual, and interannual scales. At the multiyear scale, the Noah-MP ensemble mean showed overestimation and underperformed the NLDAS ensemble mean. All models exhibited more biases in deciduous forests, grasslands, croplands, and barren soil regions. At the annual scale, Noah-MP was able to capture the timings of summer ET peaks; however, it overestimated the magnitude of ET peaks in forests, grasslands, and croplands. At the interannual scale, all models performed relatively well in shrublands, grasslands, and barren regions but poorly in forests, savannas, and croplands. Among them, the Noah-MP ensemble mean performed best in forests and the NLDAS ensemble mean performed best in savannas and croplands. Sobol’ sensitivity analysis of the Noah-MP ensemble revealed that stomatal conductance dominates ET in growing seasons in forests and grasslands and runoff dominates ET in shrublands, savannas, croplands, and barren soil regions. The above findings will be beneficial to the improvement of ET-related parameterizations and the optimization of ensemble strategies. Significance Statement The Noah land surface model with multiparameterization options (Noah-MP) features multiple options for one process, while much is known about the performance of the default configuration in simulating ET. Few studies have examined how its multioption ensemble performs under different land-cover types over thirty years. This study evaluated and compared an ET-relevant multiparameterization Noah-MP ensemble with a broad range of ET products at different temporal scales over the contiguous United States. Besides, the parameterization sensitivity to the ET estimation was quantified. Our results provide a better understanding of the strengths and weaknesses of Noah-MP and point the way toward model improvement and ensemble optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yhy发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
2秒前
勤恳的kk发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
Mic应助舒服的水壶采纳,获得10
4秒前
4秒前
5秒前
5秒前
lu关闭了lu文献求助
6秒前
Jimmy Ko发布了新的文献求助10
8秒前
芥末发布了新的文献求助10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
海蓝云天应助xiaoma采纳,获得10
9秒前
9秒前
海蓝云天应助xiaoma采纳,获得10
10秒前
AGRA发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
12秒前
HANZHANG完成签到,获得积分10
12秒前
HBY发布了新的文献求助10
14秒前
15秒前
英吉利25发布了新的文献求助10
16秒前
吃个馍馍发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
zrus116发布了新的文献求助10
18秒前
ahh完成签到 ,获得积分10
19秒前
19秒前
orixero应助奋斗向南采纳,获得10
21秒前
ch完成签到 ,获得积分10
21秒前
积极璎发布了新的文献求助10
22秒前
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785393
求助须知:如何正确求助?哪些是违规求助? 5687580
关于积分的说明 15467396
捐赠科研通 4914484
什么是DOI,文献DOI怎么找? 2645216
邀请新用户注册赠送积分活动 1593054
关于科研通互助平台的介绍 1547382