Identification of biomarkers related to iron death in diabetic kidney disease based on machine learning algorithms

疾病 逻辑回归 医学 鉴定(生物学) 生物信息学 糖尿病 算法 机器学习 病理 内科学 计算机科学 生物 植物 内分泌学
作者
Wen Xiong,Hongxia Liu,Bo Xiang,Guangyu Shang
出处
期刊:Annals of Human Biology [Informa]
卷期号:52 (1)
标识
DOI:10.1080/03014460.2025.2477248
摘要

While ferroptosis has been recognised for its key role in tumour development, its involvement in DKD is not well understood. Identifying differentially expressed ferroptosis-related genes (DEIRGs) could help improve early diagnosis and treatment strategies for DKD. Diabetic kidney disease (DKD) is a complication of diabetes that can progress to end-stage renal disease. Early diagnosis and identification of biomarkers related to its pathogenesis are crucial. This study aims to investigate the role of ferroptosis, a type of programmed cell death, in DKD, which remains largely unexplored. The objective of this study was to screen for diagnosis-related DEIRGs (DDEIRGs) in DKD and construct a diagnostic model with high accuracy. We intersected differentially expressed genes in the DKD dataset with ferroptosis-related genes to obtain DEIRGs. Gene importance was ranked using the random forest and Adaboost algorithms, and DDEIRGs were identified by intersecting results. A diagnostic model was constructed using logistic regression, and its accuracy was evaluated. Additionally, the immune landscape of DDEIRGs was analysed, and RT-qPCR was used to validate gene expression levels. The diagnostic model constructed with logistic regression demonstrated high diagnostic accuracy for DKD. Immune landscape analysis of DDEIRGs provided further insights into their potential roles. RT-qPCR confirmed the differential expression of diagnosis-related genes. This study successfully identified diagnosis-related ferroptosis genes in DKD and constructed an accurate diagnostic model. These findings enhance our understanding of the role of ferroptosis in DKD and may contribute to the development of new diagnostic and therapeutic approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单福克斯发布了新的文献求助10
3秒前
3秒前
852应助瘦瘦的迎梦采纳,获得10
4秒前
ri_290完成签到,获得积分10
5秒前
王韩完成签到,获得积分10
6秒前
朴素的士晋完成签到 ,获得积分10
6秒前
6秒前
123发布了新的文献求助10
7秒前
mali完成签到,获得积分10
8秒前
8秒前
干饭完成签到,获得积分20
8秒前
巴拉巴拉巴拉拉完成签到,获得积分10
8秒前
9秒前
美好未来发布了新的文献求助10
9秒前
10秒前
10秒前
12秒前
大力的隶发布了新的文献求助10
12秒前
mali发布了新的文献求助10
13秒前
13秒前
单福克斯完成签到,获得积分20
13秒前
14秒前
lx6869完成签到,获得积分10
14秒前
wow发布了新的文献求助10
15秒前
DAJI完成签到,获得积分10
16秒前
xgx984完成签到,获得积分10
18秒前
清秀的狗完成签到,获得积分10
18秒前
蜗壳发布了新的文献求助10
19秒前
白鹭散人发布了新的文献求助10
20秒前
jyyg完成签到,获得积分10
21秒前
21秒前
EgbertW完成签到,获得积分10
22秒前
23秒前
小海应助无语采纳,获得10
23秒前
AU完成签到 ,获得积分10
24秒前
白菜完成签到,获得积分10
24秒前
从容松弛完成签到 ,获得积分10
25秒前
张莹发布了新的文献求助10
25秒前
25秒前
26秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782938
求助须知:如何正确求助?哪些是违规求助? 3328272
关于积分的说明 10235420
捐赠科研通 3043338
什么是DOI,文献DOI怎么找? 1670491
邀请新用户注册赠送积分活动 799731
科研通“疑难数据库(出版商)”最低求助积分说明 759033