亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Leveraging transfer learning for efficient bioprinting

学习迁移 计算机科学 材料科学 人工智能
作者
Filippo Bracco,Giovanni Zanderigo,Kamran Paynabar,Bianca Maria Colosimo
出处
期刊:Biofabrication [IOP Publishing]
标识
DOI:10.1088/1758-5090/ade62f
摘要

Bioprinting is a promising family of processes combining 3D printing with life sciences, offering the potential to significantly advance various applications. Despite numerous research efforts aimed at enhancing process modeling, optimizing capabilities, and exploring new conditions, there remains a critical need to enhance process efficiency. Experimental data are paramount for improving models. Nevertheless, it is practically unfeasible to explore a multitude of conditions (e.g. different material formulations, process parameters, machines, setups), especially given the experimental constraints of budget and time. Leveraged by in-situ bioprinting monitoring, this paper explores a set of transfer learning (TL) methods designed for resource-efficient bioprinting modeling, aiming to merge established knowledge with new experimental conditions. TL encompasses machine learning strategies focused on transferring knowledge across distinct, yet similar, domains. TL is applied to an extrusion-based bioprinting case study for printability response modeling. The knowledge acquired from a model trained on one material (the source) is transferred to a new material (the target), under conditions of limited experimental data availability. Eventually, the accuracy of the transferred model is assessed and compared against a reference no-transfer scenario, which is developed from scratch following conventional practices. Furthermore, giving high importance to the experimental effort reduction, a sensitivity analysis altering the number of experimental training points is performed to assess performances and limitations of the method. This method demonstrates the feasibility of knowledge transfer in bioprinting as a catalyst for more sophisticated applications across diverse printing conditions, materials, and technologies to advancing this technology towards achieving its full potential.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助平常的乘云采纳,获得10
3秒前
研友_Z335gZ完成签到,获得积分20
5秒前
10秒前
平常的乘云完成签到,获得积分10
11秒前
16秒前
40秒前
搜集达人应助mengzhe采纳,获得10
50秒前
58秒前
58秒前
1分钟前
mengzhe发布了新的文献求助10
1分钟前
Yvonnne关注了科研通微信公众号
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
唐泽雪穗应助科研通管家采纳,获得10
1分钟前
mengzhe完成签到,获得积分10
1分钟前
柯语雪完成签到,获得积分10
1分钟前
酷酷的八宝粥完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
牛八先生完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
唐泽雪穗应助科研通管家采纳,获得10
3分钟前
唐泽雪穗应助科研通管家采纳,获得10
3分钟前
3分钟前
satsuki发布了新的文献求助10
3分钟前
善学以致用应助satsuki采纳,获得10
3分钟前
3分钟前
3分钟前
梦想在路上完成签到,获得积分10
3分钟前
Hayat发布了新的文献求助30
4分钟前
江山木发布了新的文献求助10
4分钟前
4分钟前
顾矜应助张智采纳,获得10
4分钟前
江山木发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5077997
求助须知:如何正确求助?哪些是违规求助? 4296923
关于积分的说明 13387571
捐赠科研通 4119458
什么是DOI,文献DOI怎么找? 2256007
邀请新用户注册赠送积分活动 1260335
关于科研通互助平台的介绍 1193757