亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Simultaneous prediction of porosity, saturation, and lithofacies from seismic data via multi-task deep learning

多孔性 地质学 饱和(图论) 任务(项目管理) 岩土工程 数学 工程类 组合数学 系统工程
作者
Yaoyu Feng,Luanxiao Zhao,Minghui Xu,Jingyu Liu,Kaibo Zhou,Jianhua Geng
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:: 1-86
标识
DOI:10.1190/geo2024-0260.1
摘要

Prediction of reservoir parameters, including porosity, gas saturation, and lithofacies, from seismic data is of great significance for hydrocarbon reserves evaluation, reservoir quality assessment, and geological model building. Multi-task learning exhibits robust capabilities in simultaneously predicting multiple related parameters, which is desirable for estimating multi-reservoir parameters from seismic data. We propose the utilization of a seismic multi-reservoir parameter prediction network based on multi-task learning (SeisMRMTNet) informed by joint data distribution and physical constraints for the simultaneous inversion of porosity, gas saturation, and lithofacies. The SeisMRMTNet comprises two essential components: a shared feature extraction network and three task-specific networks. These networks adopt a three-dimensional sequence-to-sequence prediction paradigm to capture spatial features, hence improving seismic prediction stability. The shared feature extraction network extracts and maintains shared features between reservoir parameters and seismic information through the hard-sharing mechanism. Then, three task-specific networks establish nonlinear relationships between the shared features and the three different parameters, respectively. We incorporate physical constraints between reservoir parameters and integrate them into the network’s feature layer. Simultaneously, a two-dimensional joint data distribution constraint is applied between the predicted and actual values of gas saturation and porosity, which is incorporated into the loss function for optimization. The blind well tests on a deep heterogeneous carbonate reservoir demonstrate that the SeisMRMTNet achieves systematic improvement in prediction accuracy and better generalization performance compared to single-task learning. In particular, SeisMRMTNet can more effectively characterize formations where porosity and saturation vary significantly. Furthermore, SeisMRMTNet enhances the geological consistency and plausibility of reservoir prediction, yielding more reasonable results and data distribution for seismic reservoir characterization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JazzWon完成签到,获得积分10
5秒前
打打应助专注纸飞机采纳,获得10
10秒前
专注纸飞机完成签到,获得积分10
17秒前
崔柯梦完成签到,获得积分10
18秒前
zqq完成签到,获得积分0
21秒前
情怀应助Dc采纳,获得10
28秒前
科研通AI5应助魁梧的败采纳,获得10
31秒前
41秒前
Jasper应助shinn采纳,获得10
42秒前
魁梧的败发布了新的文献求助10
45秒前
Dc完成签到,获得积分10
1分钟前
1分钟前
shinn发布了新的文献求助10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
wanci应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
1分钟前
顾矜应助意兴不阑珊采纳,获得10
1分钟前
1分钟前
Dc发布了新的文献求助10
1分钟前
liuyuanhao完成签到,获得积分10
1分钟前
1分钟前
1121完成签到 ,获得积分10
1分钟前
Microbiota完成签到,获得积分10
1分钟前
2分钟前
Chhc2发布了新的文献求助10
2分钟前
2分钟前
2分钟前
李同学发布了新的文献求助10
2分钟前
李同学完成签到,获得积分10
2分钟前
扶光完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
cdercder应助科研通管家采纳,获得10
3分钟前
cdercder应助科研通管家采纳,获得10
3分钟前
3分钟前
强子完成签到,获得积分10
3分钟前
李春宇完成签到 ,获得积分10
3分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Towards a spatial history of contemporary art in China 400
Ecology, Socialism and the Mastery of Nature: A Reply to Reiner Grundmann 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3847640
求助须知:如何正确求助?哪些是违规求助? 3390328
关于积分的说明 10561451
捐赠科研通 3110665
什么是DOI,文献DOI怎么找? 1714431
邀请新用户注册赠送积分活动 825231
科研通“疑难数据库(出版商)”最低求助积分说明 775421