Simultaneous prediction of porosity, saturation, and lithofacies from seismic data via multi-task deep learning

多孔性 地质学 饱和(图论) 任务(项目管理) 岩土工程 数学 工程类 组合数学 系统工程
作者
Yaoyu Feng,Luanxiao Zhao,Minghui Xu,Jingyu Liu,Kaibo Zhou,Jianhua Geng
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:: 1-86 被引量:1
标识
DOI:10.1190/geo2024-0260.1
摘要

Prediction of reservoir parameters, including porosity, gas saturation, and lithofacies, from seismic data is of great significance for hydrocarbon reserves evaluation, reservoir quality assessment, and geological model building. Multi-task learning exhibits robust capabilities in simultaneously predicting multiple related parameters, which is desirable for estimating multi-reservoir parameters from seismic data. We propose the utilization of a seismic multi-reservoir parameter prediction network based on multi-task learning (SeisMRMTNet) informed by joint data distribution and physical constraints for the simultaneous inversion of porosity, gas saturation, and lithofacies. The SeisMRMTNet comprises two essential components: a shared feature extraction network and three task-specific networks. These networks adopt a three-dimensional sequence-to-sequence prediction paradigm to capture spatial features, hence improving seismic prediction stability. The shared feature extraction network extracts and maintains shared features between reservoir parameters and seismic information through the hard-sharing mechanism. Then, three task-specific networks establish nonlinear relationships between the shared features and the three different parameters, respectively. We incorporate physical constraints between reservoir parameters and integrate them into the network’s feature layer. Simultaneously, a two-dimensional joint data distribution constraint is applied between the predicted and actual values of gas saturation and porosity, which is incorporated into the loss function for optimization. The blind well tests on a deep heterogeneous carbonate reservoir demonstrate that the SeisMRMTNet achieves systematic improvement in prediction accuracy and better generalization performance compared to single-task learning. In particular, SeisMRMTNet can more effectively characterize formations where porosity and saturation vary significantly. Furthermore, SeisMRMTNet enhances the geological consistency and plausibility of reservoir prediction, yielding more reasonable results and data distribution for seismic reservoir characterization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
jjdbqml发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
一颗蹦豆子完成签到,获得积分10
1秒前
上官若男应助缥缈浩然采纳,获得10
1秒前
2秒前
13728891737发布了新的文献求助10
3秒前
Hello应助sincere-辉采纳,获得10
4秒前
鹿过完成签到,获得积分10
5秒前
5秒前
哈哈哈哈关注了科研通微信公众号
6秒前
深情紫翠发布了新的文献求助10
6秒前
7秒前
赘婿应助无误采纳,获得10
7秒前
等风来发布了新的文献求助10
8秒前
9秒前
9秒前
无心的夏烟完成签到,获得积分10
9秒前
10秒前
TingtingGZ发布了新的文献求助10
10秒前
11秒前
11秒前
hu123发布了新的文献求助10
12秒前
小盆发布了新的文献求助10
12秒前
13秒前
阡瓴发布了新的文献求助10
13秒前
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
Lucas应助cheng采纳,获得10
16秒前
深情紫翠完成签到,获得积分20
16秒前
JamesPei应助儒雅的蓝天采纳,获得10
16秒前
grace完成签到,获得积分10
17秒前
缥缈浩然发布了新的文献求助10
17秒前
19秒前
19秒前
害羞万天发布了新的文献求助10
19秒前
隐形曼青应助范雅寒采纳,获得10
19秒前
roosterstorm完成签到 ,获得积分10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Food Microbiology - An Introduction (5th Edition) 500
苯丙氨酸解氨酶的祖先序列重建及其催化性能 500
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4840581
求助须知:如何正确求助?哪些是违规求助? 4142685
关于积分的说明 12825626
捐赠科研通 3887902
什么是DOI,文献DOI怎么找? 2137500
邀请新用户注册赠送积分活动 1157640
关于科研通互助平台的介绍 1057380