Deep learning-based radiomic nomogram to predict risk categorization of thymic epithelial tumors: A multicenter study

列线图 医学 无线电技术 队列 分类 接收机工作特性 深度学习 人工智能 放射科 机器学习 肿瘤科 内科学 计算机科学
作者
Hao Zhou,Harrison X. Bai,Zhicheng Jiao,Biqi Cui,Jing Wu,Haijun Zheng,Huan Yang,Weihua Liao
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:168: 111136-111136 被引量:5
标识
DOI:10.1016/j.ejrad.2023.111136
摘要

PurposeThe study was aimed to develop and evaluate a deep learning-based radiomics to predict the histological risk categorization of thymic epithelial tumors (TETs), which can be highly informative for patient treatment planning and prognostic assessment.MethodA total of 681 patients with TETs from three independent hospitals were included and separated into derivation cohort and external test cohort. Handcrafted and deep learning features were extracted from preoperative contrast-enhanced CT images and selected to build three radiomics signatures (radiomics signature [Rad_Sig], deep learning signature [DL_Sig] and deep learning radiomics signature [DLR_Sig]) to predict risk categorization of TETs. A deep learning-based radiomic nomogram (DLRN) was then depicted to visualize the classification evaluation. The performance of predictive models was compared using the receiver operating characteristic and decision curve analysis (DCA).ResultsAmong three radiomics signatures, DLR_Sig demonstrated optimum performance with an AUC of 0.883 for the derivation cohort and 0.749 for the external test cohort. Combining DLR_Sig with age and gender, DLRN was depict and exhibited optimum performance among all radiomics models with an AUC of 0.965, accuracy of 0.911, sensitivity of 0.921 and specificity of 0.902 in the derivation cohort, and an AUC of 0.786, accuracy of 0.774, sensitivity of 0.778 and specificity of 0.771 in the external test cohort. The DCA showed that DLRN had greater clinical benefit than other radiomics signatures.ConclusionsOur study developed and validated a DLRN to accurately predict the risk categorization of TETs, which has potential to facilitate individualized treatment and improve patient prognosis evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
科研通AI5应助cherish采纳,获得30
3秒前
3秒前
5秒前
LUO完成签到,获得积分10
5秒前
6秒前
陈权完成签到,获得积分10
6秒前
ybwei2008_163发布了新的文献求助10
7秒前
难过的谷芹应助lxcy0612采纳,获得10
7秒前
8秒前
千寒完成签到,获得积分10
9秒前
刘鸿雁完成签到,获得积分10
10秒前
sunwen发布了新的文献求助10
10秒前
10秒前
乐乐应助陈天顺采纳,获得10
12秒前
12秒前
ccc2应助lxcy0612采纳,获得30
14秒前
Selenge发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
17秒前
迷路的小蚂蚁完成签到,获得积分10
18秒前
kk发布了新的文献求助10
20秒前
PICC完成签到 ,获得积分10
20秒前
ybwei2008_163发布了新的文献求助10
21秒前
Lucas应助麦兜兜采纳,获得10
21秒前
21秒前
桐桐应助李兴采纳,获得10
21秒前
21秒前
lizhaonian发布了新的文献求助10
22秒前
23秒前
李明完成签到 ,获得积分10
23秒前
jorgan完成签到,获得积分10
27秒前
27秒前
橘子发布了新的文献求助50
27秒前
包容凌翠发布了新的文献求助10
28秒前
29秒前
赘婿应助冷傲的太英采纳,获得10
30秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Ricci Solitons in Dimensions 4 and Higher 450
the WHO Classification of Head and Neck Tumors (5th Edition) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4776757
求助须知:如何正确求助?哪些是违规求助? 4108458
关于积分的说明 12709133
捐赠科研通 3829877
什么是DOI,文献DOI怎么找? 2112710
邀请新用户注册赠送积分活动 1136508
关于科研通互助平台的介绍 1020314