Prediction of symptomatic anastomotic leak after rectal cancer surgery: A machine learning approach

Lasso(编程语言) 医学 逐步回归 逻辑回归 队列 接收机工作特性 吻合 结直肠癌 外科 预测建模 倾向得分匹配 队列研究 并发症 机器学习 内科学 癌症 计算机科学 万维网
作者
Yu Shen,Li‐Bin Huang,Anqing Lu,Tinghan Yang,Hai‐Ning Chen,Ziqiang Wang
出处
期刊:Journal of Surgical Oncology [Wiley]
卷期号:129 (2): 264-272 被引量:5
标识
DOI:10.1002/jso.27470
摘要

Abstract Introduction Anastomotic leakage (AL) remains the most dreaded and unpredictable major complication after low anterior resection for mid‐low rectal cancer. The aim of this study is to identify patients with high risk for AL based on the machine learning method. Methods Patients with mid‐low rectal cancer undergoing low anterior resection were enrolled from West China Hospital between January 2008 and October 2019 and were split by time into training cohort and validation cohort. The least absolute shrinkage and selection operator (LASSO) method and stepwise method were applied for variable selection and predictive model building in the training cohort. The area under the receiver operating characteristic curve (AUC) and calibration curves were used to evaluate the performance of the models. Results The rate of AL was 5.8% (38/652) and 7.2% (15/208) in the training cohort and validation cohort, respectively. The LASSO‐logistic model selected almost the same variables (hypertension, operating time, cT4, tumor location, intraoperative blood loss) compared to the stepwise logistic model except for tumor size (the LASSO‐logistic model) and American Society of Anesthesiologists score (the stepwise logistic model). The predictive performance of the LASSO‐logistics model was better than the stepwise‐logistics model (AUC: 0.790 vs. 0.759). Calibration curves showed mean absolute error of 0.006 and 0.013 for the LASSO‐logistics model and stepwise‐logistics model, respectively. Conclusion Our study developed a feasible predictive model with a machine‐learning algorithm to classify patients with a high risk of AL, which would assist surgical decision‐making and reduce unnecessary stoma diversion. The involved machine learning algorithms provide clinicians with an innovative alternative to enhance clinical management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yyx发布了新的文献求助10
1秒前
北落师门完成签到,获得积分10
2秒前
lllshh发布了新的文献求助20
2秒前
完美世界应助prtrichor599采纳,获得30
2秒前
3秒前
3秒前
6秒前
赘婿应助sdfadf采纳,获得10
6秒前
7秒前
万安安发布了新的文献求助10
8秒前
9秒前
小二郎应助云上人采纳,获得10
9秒前
9秒前
香蕉觅云应助mcw采纳,获得10
10秒前
小蘑菇应助大佬采纳,获得10
11秒前
快乐茗发布了新的文献求助10
12秒前
hush发布了新的文献求助60
13秒前
万能图书馆应助万安安采纳,获得10
13秒前
深情安青应助悦耳破茧采纳,获得10
14秒前
hh发布了新的文献求助10
14秒前
爆米花应助Berberin采纳,获得10
15秒前
15秒前
16秒前
科研通AI5应助两张采纳,获得10
18秒前
18秒前
所所应助曾鸣采纳,获得10
20秒前
21秒前
21秒前
烟花应助科研通管家采纳,获得10
21秒前
CipherSage应助科研通管家采纳,获得10
21秒前
刘金玲发布了新的文献求助10
21秒前
完美世界应助科研通管家采纳,获得10
22秒前
Ava应助科研通管家采纳,获得10
22秒前
苏卿应助科研通管家采纳,获得30
22秒前
NexusExplorer应助科研通管家采纳,获得20
22秒前
上官若男应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
Jasper应助科研通管家采纳,获得10
22秒前
小马甲应助科研通管家采纳,获得10
23秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795227
求助须知:如何正确求助?哪些是违规求助? 3340218
关于积分的说明 10299325
捐赠科研通 3056829
什么是DOI,文献DOI怎么找? 1677185
邀请新用户注册赠送积分活动 805274
科研通“疑难数据库(出版商)”最低求助积分说明 762420