GPCNDTA: Prediction of drug-target binding affinity through cross-attention networks augmented with graph features and pharmacophores

药效团 计算机科学 人工智能 药物发现 分子内力 交互信息 机器学习 化学 数学 立体化学 生物化学 统计
作者
Li Zhang,Chun-Chun Wang,Zhang Yon,Xing Chen
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:166: 107512-107512 被引量:28
标识
DOI:10.1016/j.compbiomed.2023.107512
摘要

Drug-target affinity prediction is a challenging task in drug discovery. The latest computational models have limitations in mining edge information in molecule graphs, accessing to knowledge in pharmacophores, integrating multimodal data of the same biomolecule and realizing effective interactions between two different biomolecules. To solve these problems, we proposed a method called Graph features and Pharmacophores augmented Cross-attention Networks based Drug-Target binding Affinity prediction (GPCNDTA). First, we utilized the GNN module, the linear projection unit and self-attention layer to correspondingly extract features of drugs and proteins. Second, we devised intramolecular and intermolecular cross-attention to respectively fuse and interact features of drugs and proteins. Finally, the linear projection unit was applied to gain final features of drugs and proteins, and the Multi-Layer Perceptron was employed to predict drug-target binding affinity. Three major innovations of GPCNDTA are as follows: (i) developing the residual CensNet and the residual EW-GCN to correspondingly extract features of drug and protein graphs, (ii) regarding pharmacophores as a new type of priors to heighten drug-target affinity prediction performance, and (iii) devising intramolecular and intermolecular cross-attention, in which the intramolecular cross-attention realizes the effective fusion of different modal data related to the same biomolecule, and the intermolecular cross-attention fulfills the information interaction between two different biomolecules in attention space. The test results on five benchmark datasets imply that GPCNDTA achieves the best performance compared with state-of-the-art computational models. Besides, relying on ablation experiments, we proved effectiveness of GNN modules, pharmacophores and two cross-attention strategies in improving the prediction accuracy, stability and reliability of GPCNDA. In case studies, we applied GPCNDTA to predict binding affinities between 3C-like proteinase and 185 drugs, and observed that most binding affinities predicted by GPCNDTA are close to corresponding experimental measurements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qy完成签到,获得积分10
1秒前
2秒前
小蛤蟆完成签到,获得积分10
2秒前
2秒前
2秒前
在郑州发布了新的文献求助10
2秒前
2秒前
鸭梨完成签到,获得积分10
3秒前
yuny完成签到,获得积分20
3秒前
方方完成签到,获得积分10
3秒前
Ranan苒苒发布了新的文献求助10
3秒前
个性的海之完成签到,获得积分10
3秒前
无辜的惜寒完成签到,获得积分10
4秒前
莫妮卡卡完成签到,获得积分10
4秒前
joe完成签到,获得积分10
4秒前
Vanilla完成签到,获得积分0
4秒前
山水完成签到,获得积分10
4秒前
乐观的海发布了新的文献求助10
4秒前
科研通AI5应助哈哈采纳,获得10
5秒前
5秒前
zwangxia完成签到,获得积分10
6秒前
yuny发布了新的文献求助20
7秒前
花卷花卷完成签到,获得积分10
7秒前
111发布了新的文献求助10
7秒前
7秒前
skoch完成签到 ,获得积分10
8秒前
坚定芯完成签到 ,获得积分10
8秒前
8秒前
qy发布了新的文献求助10
8秒前
白江虎完成签到,获得积分20
8秒前
neao完成签到 ,获得积分10
9秒前
冬冬天赖完成签到,获得积分10
9秒前
调皮的老王头完成签到,获得积分10
9秒前
蓝豆子完成签到 ,获得积分10
9秒前
10秒前
xiao柒柒柒完成签到,获得积分10
10秒前
李健应助jingyi采纳,获得10
11秒前
cz完成签到,获得积分10
12秒前
yolo完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5189134
求助须知:如何正确求助?哪些是违规求助? 4373301
关于积分的说明 13616122
捐赠科研通 4226689
什么是DOI,文献DOI怎么找? 2318386
邀请新用户注册赠送积分活动 1317069
关于科研通互助平台的介绍 1266842