TL-PVCNN: A Point Cloud Semantic Segmentation Framework on Transmission Line Scene

点云 计算机科学 分割 人工智能 传输(电信) 趋同(经济学) 电力传输 点(几何) 人工神经网络 图像分割 直线(几何图形) 计算机视觉 电信 数学 几何学 工程类 电气工程 经济 经济增长
作者
Peng Li,Wenqi Huang,Ruiye Zhou,Qunsheng Zeng,Ailing Jia,Jie Song,Mingli Song
标识
DOI:10.1109/icpics58376.2023.10235548
摘要

The transmission line is an important part of the power system. The point cloud semantic segmentation in transmission line scene can automatically segment the important equipment such as towers and transmission conductors, so that it has an understanding of the power scene. We propose a Transmission Line Point-Voxel CNN (TL-PVCNN) neural network framework for point cloud semantic segmentation in the transmission line scene. TL-PVCNN aims to solve three difficulties, and the three difficulties are information loss caused by uneven point cloud density, segmentation difficulty caused by the complex and changeable geographical environment, and difficulty in network convergence due to large gaps between foreground and background point clouds. To solve these problems, we propose our solutions in three processes, which are point clouds data processing, neural network structure construction, and loss function design. In point clouds data processing, we propose a method named Block Density Importance Sampling (BDIS) to solve the problem of information loss caused by uneven point cloud density. In neural network structure construction, we proposed a module named Attention PV-Conv to solve the problem of segmentation difficulty caused by a complex and changeable geographical environment. In loss function design, we proposed Improved Point Dice Loss to solve the problem of difficulty in network convergence due to large gaps between foreground and background point clouds. TL-PVCNN achieves mIoU of 0.81 on the transmission line point cloud dataset, specifically IoU of 0.83 on towers and IoU of 0.84 on transmission conductors. The experiment result is better than most the point cloud semantic segmentation neural network models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
高须杨发布了新的文献求助10
刚刚
1秒前
2秒前
daidaimumu完成签到 ,获得积分10
2秒前
何三岁发布了新的文献求助10
3秒前
wbyhcg发布了新的文献求助10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得30
4秒前
CAOHOU应助科研通管家采纳,获得10
4秒前
4秒前
March应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
mcqm发布了新的文献求助10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
5秒前
XXX987发布了新的文献求助10
5秒前
毛澄完成签到,获得积分10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
唐璐仪完成签到,获得积分10
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
靓丽的似狮完成签到,获得积分10
5秒前
5秒前
5秒前
March应助科研通管家采纳,获得10
5秒前
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得30
6秒前
研友_nPb9e8发布了新的文献求助10
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得30
6秒前
YooM发布了新的文献求助30
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Global Eyelash Assessment scale (GEA) 500
简明儿童少年国际神经精神访谈(MINI-KID)中文版 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4025691
求助须知:如何正确求助?哪些是违规求助? 3565476
关于积分的说明 11349441
捐赠科研通 3296545
什么是DOI,文献DOI怎么找? 1815771
邀请新用户注册赠送积分活动 890193
科研通“疑难数据库(出版商)”最低求助积分说明 813374