Pact-Net: Parallel CNNs and Transformers for medical image segmentation

分割 计算机科学 人工智能 基于分割的对象分类 图像分割 尺度空间分割 计算机视觉 模式识别(心理学) 深度学习 变压器 工程类 电压 电气工程
作者
Weilin Chen,Rui Zhang,Yunfeng Zhang,Fangxun Bao,Haixia Lv,Longhao Li,Caiming Zhang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:242: 107782-107782 被引量:11
标识
DOI:10.1016/j.cmpb.2023.107782
摘要

The image segmentation of diseases can help clinical diagnosis and treatment in medical image analysis. Because medical images usually have low contrast and large changes in the size and shape of some structures, this will lead to over-segmentation and under-segmentation. These problems are particularly evident in the segmentation of skin damage. The blurring of the boundary in skin images and the specificity of patients will further increase the difficulty of skin lesion segmentation. Currently, most researchers use deep learning networks to solve these skin segmentation problems. However, traditional convolution methods often fail to obtain satisfactory segmentation performance due to their shortcomings in obtaining global features. Recently, Transformers with good global information extraction ability has achieved satisfactory results in computer vision, which brings new solutions to optimize the model of medical image segmentation further.To extract more features related to medical image segmentation and effectively use features to further optimize the skin image segmentation model, we designed a network that combines CNNs and Transformers to improve local and global features, called Parallel CNNs and Transformers for Medical Image Segmentation (Pact-Net). Specifically, due to the advantages of Transformers in extracting global information, we create a novel fusion module CSMF, which uses channel and spatial attention mechanism and multi-scale mechanism to effectively fuse the global information extracted by Transformers into the local features extracted by CNNs. Therefore, our Pact-Net dual-branch runs in parallel to effectively capture global and local information.Our Pact-Net exceeds the models submitted on the three datasets ISIC 2016, ISIC 2017 and ISIC 2018, and the indicators required for the datasets reach 86.95%, 79.31% and 84.14%, respectively. We also conducted medical image segmentation experiments on cell and polyp datasets to evaluate the robustness, learning and generalization ability of the network. The ablation study of each part of Pact-Net proves the validity of each component, and the comparison with state-of-the-art methods on different indicators proves the predominance of the network.This paper uses the advantages of CNNs and Transformers in extracting local and global features, and further integrates features for skin lesion segmentation. Compared with the state-of-the-art methods, Pact-Net can achieve the most advanced segmentation ability on the skin lesion segmentation dataset, which can help doctors diagnose and treat diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wjscurry发布了新的文献求助10
1秒前
xinbowey完成签到,获得积分20
2秒前
科研通AI5应助等待戈多采纳,获得10
8秒前
ing完成签到,获得积分20
11秒前
科研通AI5应助人参采纳,获得10
15秒前
西瓜完成签到 ,获得积分10
17秒前
英格兰胖头鱼完成签到 ,获得积分10
21秒前
轻雨发布了新的文献求助10
22秒前
22秒前
傅雪冥完成签到,获得积分10
23秒前
烟花应助shanika采纳,获得10
23秒前
要减肥南霜完成签到 ,获得积分10
24秒前
小熊猫发布了新的文献求助10
26秒前
百宝完成签到,获得积分10
29秒前
科研通AI5应助佳佳采纳,获得10
29秒前
zz完成签到,获得积分20
30秒前
科研通AI5应助好耶采纳,获得10
31秒前
田家溢完成签到,获得积分10
33秒前
科研通AI5应助酷炫的背包采纳,获得10
36秒前
40秒前
wst1988完成签到,获得积分10
42秒前
43秒前
43秒前
44秒前
45秒前
YOLO完成签到 ,获得积分10
46秒前
Lucas应助shasha采纳,获得10
47秒前
伪科学家发布了新的文献求助10
48秒前
聪明凌柏发布了新的文献求助10
49秒前
朱比特完成签到,获得积分10
49秒前
佳佳发布了新的文献求助10
50秒前
科研通AI5应助科研通管家采纳,获得10
52秒前
斯文败类应助科研通管家采纳,获得10
52秒前
52秒前
小马甲应助科研通管家采纳,获得10
52秒前
科研通AI5应助科研通管家采纳,获得10
52秒前
田様应助科研通管家采纳,获得10
52秒前
脑洞疼应助科研通管家采纳,获得10
52秒前
科目三应助伪科学家采纳,获得10
52秒前
大个应助科研通管家采纳,获得10
52秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800330
求助须知:如何正确求助?哪些是违规求助? 3345625
关于积分的说明 10326061
捐赠科研通 3062064
什么是DOI,文献DOI怎么找? 1680781
邀请新用户注册赠送积分活动 807242
科研通“疑难数据库(出版商)”最低求助积分说明 763557