iTransformer: Inverted Transformers Are Effective for Time Series Forecasting

计算机科学 变压器 系列(地层学) 工程类 地质学 古生物学 电压 电气工程
作者
Yong Liu,Tengge Hu,Haoran Zhang,Haixu Wu,Shiyu Wang,Lintao Ma,Mingsheng Long
出处
期刊:Cornell University - arXiv 被引量:104
标识
DOI:10.48550/arxiv.2310.06625
摘要

The recent boom of linear forecasting models questions the ongoing passion for architectural modifications of Transformer-based forecasters. These forecasters leverage Transformers to model the global dependencies over temporal tokens of time series, with each token formed by multiple variates of the same timestamp. However, Transformers are challenged in forecasting series with larger lookback windows due to performance degradation and computation explosion. Besides, the embedding for each temporal token fuses multiple variates that represent potential delayed events and distinct physical measurements, which may fail in learning variate-centric representations and result in meaningless attention maps. In this work, we reflect on the competent duties of Transformer components and repurpose the Transformer architecture without any modification to the basic components. We propose iTransformer that simply applies the attention and feed-forward network on the inverted dimensions. Specifically, the time points of individual series are embedded into variate tokens which are utilized by the attention mechanism to capture multivariate correlations; meanwhile, the feed-forward network is applied for each variate token to learn nonlinear representations. The iTransformer model achieves state-of-the-art on challenging real-world datasets, which further empowers the Transformer family with promoted performance, generalization ability across different variates, and better utilization of arbitrary lookback windows, making it a nice alternative as the fundamental backbone of time series forecasting. Code is available at this repository: https://github.com/thuml/iTransformer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
北过完成签到,获得积分10
刚刚
刚刚
鬼神完成签到,获得积分10
刚刚
淡淡书白完成签到,获得积分10
1秒前
收拾收拾发布了新的文献求助30
2秒前
2秒前
yuzhi完成签到,获得积分10
2秒前
悠明夜月完成签到 ,获得积分10
2秒前
黄大小姐完成签到,获得积分10
3秒前
3秒前
3秒前
美女完成签到,获得积分10
3秒前
Cici完成签到 ,获得积分10
4秒前
4秒前
zhang7jing完成签到,获得积分10
4秒前
贝林7完成签到,获得积分10
4秒前
Kelly完成签到,获得积分10
4秒前
5秒前
SY完成签到,获得积分10
6秒前
zho发布了新的文献求助10
6秒前
小冉发布了新的文献求助10
6秒前
周围完成签到,获得积分10
7秒前
小鱼要变咸完成签到,获得积分10
7秒前
ghigh发布了新的文献求助10
7秒前
笨笨千青完成签到,获得积分10
7秒前
共享精神应助cuihao采纳,获得10
7秒前
吕文晴完成签到 ,获得积分10
8秒前
枸橼酸完成签到,获得积分10
8秒前
pl656完成签到,获得积分10
8秒前
Anquan完成签到,获得积分10
8秒前
竹子完成签到,获得积分10
8秒前
8秒前
8秒前
舒适香露完成签到,获得积分10
9秒前
子唯发布了新的文献求助10
9秒前
melody完成签到,获得积分10
10秒前
see完成签到,获得积分10
10秒前
星梦完成签到 ,获得积分20
10秒前
lee完成签到 ,获得积分10
10秒前
虫虫发布了新的文献求助10
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785022
求助须知:如何正确求助?哪些是违规求助? 3330388
关于积分的说明 10245821
捐赠科研通 3045781
什么是DOI,文献DOI怎么找? 1671722
邀请新用户注册赠送积分活动 800709
科研通“疑难数据库(出版商)”最低求助积分说明 759621