Label-free Node Classification on Graphs with Large Language Models (LLMS)

计算机科学 杠杆(统计) 推论 人工智能 机器学习
作者
Zhikai Chen,Haitao Mao,Hongzhi Wen,Haoyu Han,Wei Jin,Haiyang Zhang,Hui Liu,Jiliang Tang
出处
期刊:Cornell University - arXiv 被引量:6
标识
DOI:10.48550/arxiv.2310.04668
摘要

In recent years, there have been remarkable advancements in node classification achieved by Graph Neural Networks (GNNs). However, they necessitate abundant high-quality labels to ensure promising performance. In contrast, Large Language Models (LLMs) exhibit impressive zero-shot proficiency on text-attributed graphs. Yet, they face challenges in efficiently processing structural data and suffer from high inference costs. In light of these observations, this work introduces a label-free node classification on graphs with LLMs pipeline, LLM-GNN. It amalgamates the strengths of both GNNs and LLMs while mitigating their limitations. Specifically, LLMs are leveraged to annotate a small portion of nodes and then GNNs are trained on LLMs' annotations to make predictions for the remaining large portion of nodes. The implementation of LLM-GNN faces a unique challenge: how can we actively select nodes for LLMs to annotate and consequently enhance the GNN training? How can we leverage LLMs to obtain annotations of high quality, representativeness, and diversity, thereby enhancing GNN performance with less cost? To tackle this challenge, we develop an annotation quality heuristic and leverage the confidence scores derived from LLMs to advanced node selection. Comprehensive experimental results validate the effectiveness of LLM-GNN. In particular, LLM-GNN can achieve an accuracy of 74.9% on a vast-scale dataset \products with a cost less than 1 dollar.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
科研通AI5应助钮祜禄废废采纳,获得10
1秒前
slowride发布了新的文献求助10
2秒前
Starry完成签到,获得积分10
2秒前
efine发布了新的文献求助10
3秒前
在水一方应助小包子采纳,获得10
4秒前
6秒前
明天过后完成签到,获得积分10
6秒前
尽如完成签到,获得积分10
8秒前
丁元英完成签到,获得积分10
9秒前
爱笑的树叶完成签到,获得积分10
10秒前
松鼠完成签到 ,获得积分10
10秒前
Singularity应助一研为腚采纳,获得10
14秒前
沐飒完成签到,获得积分10
15秒前
16秒前
16秒前
bkagyin应助song采纳,获得10
18秒前
孤独的尔蓉完成签到,获得积分10
18秒前
炼丹发布了新的文献求助10
19秒前
yan完成签到,获得积分10
20秒前
orixero应助无辜乘云采纳,获得10
20秒前
可可应助ZS0901采纳,获得10
21秒前
玛卡巴卡小心点完成签到,获得积分10
22秒前
车载儿童发布了新的文献求助10
22秒前
Kirito应助lalala采纳,获得10
22秒前
22秒前
michael发布了新的文献求助30
24秒前
25秒前
今后应助乐多采纳,获得10
27秒前
传奇3应助炼丹采纳,获得10
27秒前
cattleherd完成签到,获得积分10
28秒前
王饱饱完成签到,获得积分10
28秒前
溜了溜了完成签到,获得积分10
28秒前
科研通AI5应助时度采纳,获得10
29秒前
CodeCraft应助TOM采纳,获得10
29秒前
29秒前
luyao970131发布了新的文献求助10
29秒前
29秒前
LucienS完成签到,获得积分10
31秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842012
求助须知:如何正确求助?哪些是违规求助? 3384135
关于积分的说明 10532872
捐赠科研通 3104461
什么是DOI,文献DOI怎么找? 1709640
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 773953