核(代数)
图像质量
图像复原
图像处理
噪音(视频)
人工神经网络
计算机科学
降噪
散粒噪声
图像(数学)
人工智能
光学
计算机视觉
数学
物理
电信
组合数学
探测器
作者
Ju Tang,Jiawei Zhang,Zhenbo Ren,Jianglei Di,Xiaoyan Wu,Jianlin Zhao
出处
期刊:Optics Letters
[The Optical Society]
日期:2023-08-21
卷期号:48 (18): 4849-4849
被引量:3
摘要
We propose a model-enhanced network with unpaired single-shot data for solving the imaging blur problem of an optical sparse aperture (OSA) system. With only one degraded image captured from the system and one “arbitrarily” selected unpaired clear image, the cascaded neural network is iteratively trained for denoising and restoration. With the computational image degradation model enhancement, our method is able to improve contrast, restore blur, and suppress noise of degraded images in simulation and experiment. It can achieve better restoration performance with fewer priors than other algorithms. The easy selectivity of unpaired clear images and the non-strict requirement of a custom kernel make it suitable and applicable for single-shot image restoration of any OSA system.
科研通智能强力驱动
Strongly Powered by AbleSci AI