核医学
体内分布
医学
Spect成像
准直器
成像体模
临床影像学
放射性核素治疗
扫描仪
前列腺癌
放射科
癌症
物理
体内
生物技术
内科学
光学
生物
作者
Monika Kvassheim,Anna Julie Kjøl Tornes,Asta Juzeniene,Caroline Stokke,Mona‐Elisabeth Revheim
出处
期刊:EJNMMI Physics
[Springer Science+Business Media]
日期:2023-08-21
卷期号:10 (1)
被引量:3
标识
DOI:10.1186/s40658-023-00571-6
摘要
1 Abstract Introduction 212 Pb is a promising radionuclide for targeted alpha therapy. Here, the feasibility of visualising the tumour uptake and biodistribution of 212 Pb-NG001 in mice with a clinical SPECT/CT scanner was investigated. Methods A mouse phantom with 212 Pb was imaged with a clinical- and a preclinical SPECT/CT scanner. Different acquisition and reconstruction settings were investigated on the clinical system (Siemens Symbia Intevo Bold). Two athymic nude mice carrying PC-3 PIP prostate cancer tumours of 235–830 μl received 1.44 MBq of 212 Pb-NG001 and were imaged 2, 6, and 24 h post-injection on the clinical SPECT/CT with a Medium Energy collimator and a 40% energy window centred on 79 keV. All acquisition times were 30 min, except the mouse imaging 24 h post-injection which was 60 min. After the final imaging, the organs were harvested and measured on a gamma counter to give an indication of how much activity was present in organs of interest at the last imaging time point. Results Four volumes in the mouse phantom of ~ 300 μl with 246–303 kBq/ml of 212 Pb were distinguishable on images acquired with the clinical SPECT/CT with a high number of reconstruction updates. With the preclinical SPECT, the same volumes were easily distinguished with 49 kBq/ml of 212 Pb. Clinical SPECT/CT images of the mice revealed uptake in tumours and bladders 2 h after injection and in tumours containing down to approximately 15 kBq/ml at 6 and 24 h after injection. Conclusion Although the preclinical scanner should be used preferentially in biodistribution studies in mice, the clinical SPECT/CT confirmed uptake in small volumes (e.g. ~ 300 μl volume with ~ 250 kBq/ml). Regardless of system, the resolution and sensitivity limits should be carefully determined, otherwise false negative or too low uptakes can be wrongly interpreted.
科研通智能强力驱动
Strongly Powered by AbleSci AI