SceneNet: A Multi-Feature Joint Embedding Network With Complexity Assessment for Power Line Scene Classification

计算机科学 人工智能 特征提取 水准点(测量) 特征(语言学) 模式识别(心理学) 语言学 哲学 大地测量学 地理
作者
Le Zhao,Hongtai Yao,Yajun Fan,Haihua Ma,Zhihui Li,Meng Tian
出处
期刊:IEEE Transactions on Aerospace and Electronic Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-23
标识
DOI:10.1109/taes.2023.3313993
摘要

Power line extraction is not only crucial for UAVs obstacle avoidance, but also a fundamental step for fault diagnosis of power lines. Therefore, achieving robust and accurate extraction of power lines in aerial images is essential to enable intelligent UAVs inspection. Unfortunately, power line extraction is an extremely challenging task, and all the current methods attempt to utilize a single model to solve the problem of power line extraction in complex and variable scenes. This results in insufficient generalization ability and suboptimal computational efficiency. In this work, we propose a power line scene classification network based on complexity assessment, named SceneNet, which can provide a solution for tackling power line extraction challenges. Firstly, we propose a human-machine hybrid reasoning model to obtain the ground truth of image complexity reasonably and build the first benchmark dataset that can be used for automatic classification research of power line scenes. Secondly, we propose an improved StyleGAN3 model and loop transfer learning strategy for data augmentation. Most importantly, the SceneNet comprises a multi-feature joint embedding module and a feature encoding-decoding module. On the one hand, it achieves the multi-level fusion of artificial features and high-dimensional semantic features. On the other hand, we use a self-attention mechanism to enable full use of the contextual association between each block of the fusion feature map. The SceneNet has successfully achieved the mapping and pattern recognition between the abstract concept and the concrete features. Experimental results demonstrate that the SceneNet is obviously superior to the existing 12 state-of-the-art models, and it provides guidance and delineation of applicable scenes for power line extraction methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大脚仙完成签到,获得积分10
刚刚
源子完成签到,获得积分10
1秒前
幽默赛君完成签到 ,获得积分10
2秒前
2秒前
doctorw完成签到 ,获得积分10
2秒前
天天快乐应助莫茹采纳,获得10
4秒前
xyyyy完成签到 ,获得积分10
6秒前
张柏柳发布了新的文献求助10
7秒前
7秒前
louyu完成签到 ,获得积分10
8秒前
自觉的小蝴蝶完成签到,获得积分10
9秒前
10秒前
11秒前
科研通AI5应助轻松的芷烟采纳,获得10
12秒前
脑洞疼应助1111采纳,获得10
12秒前
科研通AI5应助bb采纳,获得10
14秒前
大个应助自觉的小蝴蝶采纳,获得10
15秒前
坤坤完成签到,获得积分10
15秒前
17秒前
lwl666完成签到,获得积分10
17秒前
sss发布了新的文献求助30
17秒前
小彤完成签到 ,获得积分10
17秒前
DireWolf完成签到 ,获得积分10
19秒前
zqingqing完成签到,获得积分10
20秒前
Felixsun发布了新的文献求助10
23秒前
风云鱼完成签到,获得积分10
23秒前
至夏完成签到,获得积分10
23秒前
23秒前
莫友安完成签到 ,获得积分10
25秒前
26秒前
scq完成签到 ,获得积分10
26秒前
27秒前
27秒前
恒河鲤完成签到,获得积分10
30秒前
yueu发布了新的文献求助10
30秒前
平淡小丸子完成签到 ,获得积分10
30秒前
宁远完成签到 ,获得积分10
30秒前
建业发布了新的文献求助10
31秒前
VDC发布了新的文献求助10
31秒前
33秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671598
求助须知:如何正确求助?哪些是违规求助? 3228309
关于积分的说明 9779385
捐赠科研通 2938622
什么是DOI,文献DOI怎么找? 1610143
邀请新用户注册赠送积分活动 760547
科研通“疑难数据库(出版商)”最低求助积分说明 736093