SceneNet: A Multi-Feature Joint Embedding Network With Complexity Assessment for Power Line Scene Classification

计算机科学 人工智能 特征提取 水准点(测量) 特征(语言学) 模式识别(心理学) 大地测量学 语言学 哲学 地理
作者
Le Zhao,Hongtai Yao,Yajun Fan,Haihua Ma,Zhihui Li,Meng Tian
出处
期刊:IEEE Transactions on Aerospace and Electronic Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-23
标识
DOI:10.1109/taes.2023.3313993
摘要

Power line extraction is not only crucial for UAVs obstacle avoidance, but also a fundamental step for fault diagnosis of power lines. Therefore, achieving robust and accurate extraction of power lines in aerial images is essential to enable intelligent UAVs inspection. Unfortunately, power line extraction is an extremely challenging task, and all the current methods attempt to utilize a single model to solve the problem of power line extraction in complex and variable scenes. This results in insufficient generalization ability and suboptimal computational efficiency. In this work, we propose a power line scene classification network based on complexity assessment, named SceneNet, which can provide a solution for tackling power line extraction challenges. Firstly, we propose a human-machine hybrid reasoning model to obtain the ground truth of image complexity reasonably and build the first benchmark dataset that can be used for automatic classification research of power line scenes. Secondly, we propose an improved StyleGAN3 model and loop transfer learning strategy for data augmentation. Most importantly, the SceneNet comprises a multi-feature joint embedding module and a feature encoding-decoding module. On the one hand, it achieves the multi-level fusion of artificial features and high-dimensional semantic features. On the other hand, we use a self-attention mechanism to enable full use of the contextual association between each block of the fusion feature map. The SceneNet has successfully achieved the mapping and pattern recognition between the abstract concept and the concrete features. Experimental results demonstrate that the SceneNet is obviously superior to the existing 12 state-of-the-art models, and it provides guidance and delineation of applicable scenes for power line extraction methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寻菡完成签到,获得积分10
1秒前
feng1235发布了新的文献求助10
3秒前
JINGXIONG发布了新的文献求助10
3秒前
6秒前
刘一完成签到 ,获得积分10
6秒前
广發完成签到 ,获得积分10
6秒前
石中酒完成签到 ,获得积分10
7秒前
激昂的寒荷完成签到 ,获得积分10
11秒前
ENIX完成签到 ,获得积分10
12秒前
CAOHOU应助juphen2采纳,获得10
13秒前
潇洒觅山完成签到,获得积分10
14秒前
guri完成签到,获得积分10
16秒前
林谩完成签到 ,获得积分20
16秒前
17秒前
17秒前
18秒前
LHP完成签到 ,获得积分10
22秒前
冷酷莫茗完成签到,获得积分10
23秒前
祝融发布了新的文献求助10
24秒前
25秒前
27秒前
传奇3应助科研通管家采纳,获得10
29秒前
baoxiaozhai完成签到 ,获得积分10
29秒前
小天应助科研通管家采纳,获得10
29秒前
领导范儿应助科研通管家采纳,获得10
30秒前
打卡下班应助科研通管家采纳,获得10
30秒前
天天快乐应助科研通管家采纳,获得30
30秒前
打卡下班应助科研通管家采纳,获得10
30秒前
huai应助科研通管家采纳,获得10
30秒前
小天应助科研通管家采纳,获得10
30秒前
丘比特应助科研通管家采纳,获得10
30秒前
无花果应助科研通管家采纳,获得10
30秒前
30秒前
打卡下班应助科研通管家采纳,获得10
30秒前
LXZ发布了新的文献求助10
30秒前
小天应助科研通管家采纳,获得10
30秒前
30秒前
Akim应助科研通管家采纳,获得10
31秒前
huai应助科研通管家采纳,获得10
31秒前
小天应助科研通管家采纳,获得10
31秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
Acylated delphinidin glucosides and flavonols from Clitoria ternatea 800
Logical form: From GB to Minimalism 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4186198
求助须知:如何正确求助?哪些是违规求助? 3722222
关于积分的说明 11728901
捐赠科研通 3400281
什么是DOI,文献DOI怎么找? 1865768
邀请新用户注册赠送积分活动 922802
科研通“疑难数据库(出版商)”最低求助积分说明 834248