SceneNet: A Multi-Feature Joint Embedding Network With Complexity Assessment for Power Line Scene Classification

计算机科学 人工智能 特征提取 水准点(测量) 特征(语言学) 模式识别(心理学) 语言学 哲学 大地测量学 地理
作者
Le Zhao,Hongtai Yao,Yajun Fan,Haihua Ma,Zhihui Li,Meng Tian
出处
期刊:IEEE Transactions on Aerospace and Electronic Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-23
标识
DOI:10.1109/taes.2023.3313993
摘要

Power line extraction is not only crucial for UAVs obstacle avoidance, but also a fundamental step for fault diagnosis of power lines. Therefore, achieving robust and accurate extraction of power lines in aerial images is essential to enable intelligent UAVs inspection. Unfortunately, power line extraction is an extremely challenging task, and all the current methods attempt to utilize a single model to solve the problem of power line extraction in complex and variable scenes. This results in insufficient generalization ability and suboptimal computational efficiency. In this work, we propose a power line scene classification network based on complexity assessment, named SceneNet, which can provide a solution for tackling power line extraction challenges. Firstly, we propose a human-machine hybrid reasoning model to obtain the ground truth of image complexity reasonably and build the first benchmark dataset that can be used for automatic classification research of power line scenes. Secondly, we propose an improved StyleGAN3 model and loop transfer learning strategy for data augmentation. Most importantly, the SceneNet comprises a multi-feature joint embedding module and a feature encoding-decoding module. On the one hand, it achieves the multi-level fusion of artificial features and high-dimensional semantic features. On the other hand, we use a self-attention mechanism to enable full use of the contextual association between each block of the fusion feature map. The SceneNet has successfully achieved the mapping and pattern recognition between the abstract concept and the concrete features. Experimental results demonstrate that the SceneNet is obviously superior to the existing 12 state-of-the-art models, and it provides guidance and delineation of applicable scenes for power line extraction methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pluto应助xiuxiuzhang采纳,获得20
刚刚
momo完成签到,获得积分10
3秒前
bee完成签到 ,获得积分10
4秒前
江南之南完成签到 ,获得积分10
4秒前
5秒前
冰山未闯完成签到,获得积分10
7秒前
可爱的函函应助TS采纳,获得30
7秒前
lalala完成签到,获得积分10
8秒前
神勇语堂完成签到 ,获得积分10
8秒前
sci完成签到 ,获得积分10
9秒前
yuchen应助南风采纳,获得10
10秒前
干净的烧鹅完成签到,获得积分10
10秒前
折柳完成签到 ,获得积分10
10秒前
kento完成签到,获得积分0
10秒前
尤珩完成签到,获得积分10
11秒前
梵高完成签到,获得积分10
12秒前
22秒前
Cu完成签到 ,获得积分10
22秒前
背后归尘完成签到,获得积分10
22秒前
23秒前
111完成签到 ,获得积分10
27秒前
上官若男应助McbxM采纳,获得10
27秒前
七七完成签到,获得积分10
28秒前
SciGPT应助Allen采纳,获得10
29秒前
红炉点血发布了新的文献求助30
29秒前
CodeCraft应助葛葛巫采纳,获得10
29秒前
受伤听露完成签到 ,获得积分10
30秒前
JJ完成签到,获得积分10
30秒前
pluto应助优雅的纸鹤采纳,获得20
31秒前
传奇3应助wqm采纳,获得10
32秒前
doDo发布了新的文献求助20
33秒前
35秒前
jhx完成签到,获得积分10
37秒前
超级涔完成签到 ,获得积分10
39秒前
40秒前
McbxM发布了新的文献求助10
40秒前
zdw完成签到,获得积分10
43秒前
六十的清发布了新的文献求助10
46秒前
McbxM完成签到,获得积分10
47秒前
小梁要加油应助哈哈哈采纳,获得40
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761727
求助须知:如何正确求助?哪些是违规求助? 3305495
关于积分的说明 10134394
捐赠科研通 3019564
什么是DOI,文献DOI怎么找? 1658199
邀请新用户注册赠送积分活动 791974
科研通“疑难数据库(出版商)”最低求助积分说明 754751