SceneNet: A Multi-Feature Joint Embedding Network With Complexity Assessment for Power Line Scene Classification

计算机科学 人工智能 特征提取 水准点(测量) 特征(语言学) 模式识别(心理学) 语言学 哲学 大地测量学 地理
作者
Le Zhao,Hongtai Yao,Yajun Fan,Haihua Ma,Zhihui Li,Meng Tian
出处
期刊:IEEE Transactions on Aerospace and Electronic Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-23
标识
DOI:10.1109/taes.2023.3313993
摘要

Power line extraction is not only crucial for UAVs obstacle avoidance, but also a fundamental step for fault diagnosis of power lines. Therefore, achieving robust and accurate extraction of power lines in aerial images is essential to enable intelligent UAVs inspection. Unfortunately, power line extraction is an extremely challenging task, and all the current methods attempt to utilize a single model to solve the problem of power line extraction in complex and variable scenes. This results in insufficient generalization ability and suboptimal computational efficiency. In this work, we propose a power line scene classification network based on complexity assessment, named SceneNet, which can provide a solution for tackling power line extraction challenges. Firstly, we propose a human-machine hybrid reasoning model to obtain the ground truth of image complexity reasonably and build the first benchmark dataset that can be used for automatic classification research of power line scenes. Secondly, we propose an improved StyleGAN3 model and loop transfer learning strategy for data augmentation. Most importantly, the SceneNet comprises a multi-feature joint embedding module and a feature encoding-decoding module. On the one hand, it achieves the multi-level fusion of artificial features and high-dimensional semantic features. On the other hand, we use a self-attention mechanism to enable full use of the contextual association between each block of the fusion feature map. The SceneNet has successfully achieved the mapping and pattern recognition between the abstract concept and the concrete features. Experimental results demonstrate that the SceneNet is obviously superior to the existing 12 state-of-the-art models, and it provides guidance and delineation of applicable scenes for power line extraction methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yanki完成签到,获得积分10
1秒前
mary完成签到,获得积分10
1秒前
gzgljh完成签到,获得积分10
2秒前
乐乐乐完成签到,获得积分10
3秒前
学习发布了新的文献求助10
4秒前
轻松元绿完成签到 ,获得积分10
4秒前
凊嗏淡墨完成签到,获得积分10
4秒前
研友_Z60ObL完成签到,获得积分10
6秒前
小陈完成签到,获得积分10
7秒前
sunshine999完成签到,获得积分10
7秒前
DDJoy完成签到,获得积分10
10秒前
吃猫的鱼完成签到,获得积分10
12秒前
安澜完成签到,获得积分10
12秒前
13秒前
鱼女士完成签到,获得积分10
16秒前
多情以山完成签到 ,获得积分10
16秒前
红叶完成签到,获得积分10
17秒前
去微软发布了新的文献求助10
19秒前
wwl完成签到,获得积分10
20秒前
加载文献别卡了完成签到,获得积分10
22秒前
叶子完成签到,获得积分10
22秒前
23秒前
灵感大王喵完成签到 ,获得积分10
24秒前
乐乐妈完成签到,获得积分10
24秒前
24秒前
白日梦小说家完成签到 ,获得积分10
28秒前
yuan完成签到,获得积分10
28秒前
美丽的仙人掌完成签到,获得积分10
29秒前
乔巴完成签到,获得积分10
30秒前
帆帆帆完成签到 ,获得积分10
31秒前
去微软完成签到,获得积分10
31秒前
负责的寒梅完成签到 ,获得积分10
32秒前
奋斗的蓝蜗牛完成签到,获得积分10
32秒前
lily完成签到,获得积分10
34秒前
小亮哈哈完成签到,获得积分10
34秒前
林小鱼完成签到,获得积分10
34秒前
包容的映天完成签到 ,获得积分10
36秒前
爱可可月完成签到,获得积分10
39秒前
有有完成签到 ,获得积分10
39秒前
852应助一杯美事采纳,获得10
42秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3052675
求助须知:如何正确求助?哪些是违规求助? 2709926
关于积分的说明 7418483
捐赠科研通 2354527
什么是DOI,文献DOI怎么找? 1246159
科研通“疑难数据库(出版商)”最低求助积分说明 605951
版权声明 595921