The effects of Monascus purpureus fermentation on metabolic profile, α-glucosidase inhibitory action, and in vitro digestion of mulberry leaves flavonoids

紫色红曲霉 类黄酮 红曲霉 芦丁 槲皮素 发酵 食品科学 山奈酚 化学 芹菜素 生物 生物化学 抗氧化剂
作者
Biao Wang,C. J. Wang,Yichen Duan,Chun Liu,Xiaowei Zhang,Junqiang Jia,Qiongying Wu
出处
期刊:Lebensmittel-Wissenschaft & Technologie [Elsevier]
卷期号:188: 115449-115449 被引量:9
标识
DOI:10.1016/j.lwt.2023.115449
摘要

Mulberry leaves (MLs) were considered to have great hypoglycemic potential because of their rich flavonoid compounds. To enhance the hypoglycaemic effect of MLs, we exploited the fermentation potential of Monascus purpureus to improve its flavonoid profile. Targeted metabolomics analysis showed that we optimized flavonoid composition by subjecting MLs to M. purpureus fermentation. Significant improvements in flavonoid content were observed, with both solid-state fermentation (SSF) and submerged fermentation (SMF) enhancing the flavonoid profiles. Specifically, kaempferol and quercetin were significantly upregulated, whereas astragalin, isoquercetin, and rutin were downregulated, suggesting enhanced antidiabetic properties. Our investigation revealed the metabolic pathways that emphasize the importance of flavonoid biosynthesis. Enhanced α-glucosidase (AG) inhibitory activities were identified in fermented MLs, which are essential for diabetes management. The IC50 values for the inhibitory activities of SSF-MLs and SMF-MLs against AG reached 112.80 ± 1.29 μg/mL and 123.90 ± 0.96 μg/mL, respectively. The types of AG inhibition by the seven major flavonoids were revealed by enzyme inhibition kinetics. Molecular docking revealed the interaction mechanisms underlying AG inhibition. Furthermore, our study demonstrated that SMF optimizes the bioavailability of flavonoids during in vitro digestion. This study presents M. purpureus-assisted MLs fermentation as an relevant strategy, enriching its therapeutic potential for diabetes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ping发布了新的文献求助10
1秒前
霸气雅柔关注了科研通微信公众号
1秒前
2秒前
2秒前
好运连连完成签到 ,获得积分10
3秒前
xx发布了新的文献求助10
4秒前
saeda发布了新的文献求助30
5秒前
5秒前
5秒前
夏侯夏侯发布了新的文献求助10
8秒前
彭于晏应助王jj采纳,获得10
9秒前
在水一方应助boltos采纳,获得10
9秒前
9秒前
在水一方应助xx采纳,获得10
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
summerer完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
府中园马完成签到,获得积分10
12秒前
田様应助braving采纳,获得10
12秒前
13秒前
ding完成签到 ,获得积分10
14秒前
JMQQ完成签到,获得积分10
14秒前
15秒前
小雯完成签到 ,获得积分10
15秒前
16秒前
西西发布了新的文献求助10
16秒前
bkagyin应助666采纳,获得10
17秒前
17秒前
18秒前
18秒前
苹果派完成签到 ,获得积分10
18秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
19秒前
19秒前
科研通AI6应助开心的觅山采纳,获得20
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5662810
求助须知:如何正确求助?哪些是违规求助? 4844934
关于积分的说明 15101206
捐赠科研通 4821125
什么是DOI,文献DOI怎么找? 2580580
邀请新用户注册赠送积分活动 1534718
关于科研通互助平台的介绍 1493173