Combined two-level guided wave structural health monitoring strategy using multifeature integration and machine learning: application to early-age grouted sleeves

极限学习机 薄泥浆 钢筋 混淆矩阵 泄漏(经济) 混乱 计算机科学 结构健康监测 结构工程 人工智能 模式识别(心理学) 算法 机器学习 工程类 人工神经网络 经济 心理学 精神分析 宏观经济学
作者
Jiahe Liu,Jun Yi,Dongsheng Li,Xiushi Cui,Junlong Zhou
出处
期刊:Smart Materials and Structures [IOP Publishing]
卷期号:32 (9): 095026-095026 被引量:5
标识
DOI:10.1088/1361-665x/acec22
摘要

Abstract Structural health monitoring of grouted sleeves is one of the assembly industry’s huge challenges. In this study, a combined two-level damage detection was introduced. It comprises defect classification (healthy, rebar eccentricity, and grout leakage) and severity evaluation for early-age grouted sleeves using guided waves. Multiple features (MF) from time-, frequency-, and time-frequency domains were extracted and defined according to the diverse defects and ages of grouted sleeves to represent complex damage characteristics. Moreover, the egret swarm algorithm optimization–extreme learning machine (ESAO-ELM) models were proposed to avoid the influence of subjective experience and judgment from experts. ESAO optimized the initial random parameters (input weights and hidden layer bias) of ELM. Then, two MF-ESAO-ELM models were trained for two-level damage detection on the experimental dataset. The performance of the proposed models was comprehensively evaluated using accuracy, recall, precision, and confusion matrix. MF-ESAO-ELM performs better than ELM and PSO-ELM in accuracy. In this strategy, the defect classification model works in the outer layer to distinguish the state and types of defects of grouted sleeves (healthy, eccentric, or leakage). In comparison, the inner layer starts predicting the severity only if the defect type is leakage. MF-ESAO-ELM offers advantages in terms of accuracy, strategy, and calculation time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
果子黄发布了新的文献求助10
刚刚
茶米发布了新的文献求助10
刚刚
Zjn-发布了新的文献求助10
1秒前
1秒前
满天星完成签到,获得积分10
3秒前
3秒前
3秒前
孙彩瑛发布了新的文献求助10
7秒前
xiamu发布了新的文献求助10
7秒前
述说发布了新的文献求助10
7秒前
刘春亚完成签到,获得积分10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
xh发布了新的文献求助10
7秒前
所所应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
17784158937应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
17784158937应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
8秒前
科目三应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
17784158937应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
无极微光应助科研通管家采纳,获得20
8秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
炙热的太阳完成签到 ,获得积分20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557518
求助须知:如何正确求助?哪些是违规求助? 4642631
关于积分的说明 14668588
捐赠科研通 4584033
什么是DOI,文献DOI怎么找? 2514512
邀请新用户注册赠送积分活动 1488838
关于科研通互助平台的介绍 1459482