亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Supertough and Highly‐Conductive Nano‐Dipole Doped Composite Polymer Electrolyte with Hybrid Li+‐Solvation Microenvironment for Lithium Metal Batteries

材料科学 电解质 分离器(采油) 化学工程 离子电导率 快离子导体 导电聚合物 聚合物 掺杂剂 锂(药物) 复合数 兴奋剂 溶剂化 纳米技术 离子 复合材料 物理化学 有机化学 光电子学 电极 化学 医学 物理 工程类 热力学 内分泌学
作者
Shanshan Lv,Xuewei He,Zhongfeng Ji,Sifan Yang,Lanxiang Feng,Xuewei Fu,Wei Yang,Yu Wang
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:13 (44) 被引量:52
标识
DOI:10.1002/aenm.202302711
摘要

Abstract Achieving solid polymer electrolytes with ceramic‐like fast single‐ion conduction behavior, separator‐required mechanical properties, and good lithium‐dendrite suppression capability is essential but extremely challenging for the practical success of solid‐state lithium‐metal batteries. The key to overcome this long‐standing bottleneck is to rationally design the Li + ‐transport microenvironment inside the polymeric ion‐conductors. Herein, the concept of a nano‐dipole doped composite polymer electrolyte (NDCPE) is proposed using surface‐charged halloysite nanotubes (d‐HNTs) as the dopant to achieve a Li + ‐transport‐friendly microenvironment in poly(vinylidene fluoride) (PVDF) based quasi‐solid electrolytes. Results show that the d‐HNTs doping can immobilize the anions and help dissociate the lithium salt, which leads to an advanced dynamic Li + ‐interface yielding both a high Li + ‐transference number (0.75 ± 0.04) and ionic conductivity (0.29 ± 0.04 mS cm −1 @R.T.). Moreover, compared with the commercial separator, the NDCPE thin‐film shows similar toughness, mechanical strength, and puncture resistance, but much superior capability for stabilizing the lithium‐metal anode. To understand the possible doping mechanism, a hybrid Li + ‐solvation model combining the surface charges of the nanofiller, absorbed solvent molecules, and absorbed polymer chain unit is proposed and discussed for guiding the future studies on advanced hybrid solid polymer electrolytes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ashao完成签到 ,获得积分10
2秒前
宋宋要成功完成签到 ,获得积分10
9秒前
micheal小牛完成签到,获得积分10
25秒前
zm完成签到 ,获得积分10
48秒前
隐形曼青应助秋日思语采纳,获得10
1分钟前
1分钟前
秋日思语发布了新的文献求助10
1分钟前
张燕完成签到,获得积分10
1分钟前
2分钟前
在水一方完成签到 ,获得积分10
2分钟前
秋日思语发布了新的文献求助10
2分钟前
英俊的铭应助热情高跟鞋采纳,获得10
3分钟前
这学真难读下去完成签到,获得积分10
3分钟前
3分钟前
4分钟前
AixLeft完成签到 ,获得积分10
4分钟前
热情高跟鞋完成签到,获得积分10
4分钟前
4分钟前
无花果发布了新的文献求助10
4分钟前
CodeCraft应助cube半肥半瘦采纳,获得10
4分钟前
5分钟前
观众发布了新的文献求助10
5分钟前
Akim应助科研通管家采纳,获得10
5分钟前
斯文败类应助科研通管家采纳,获得10
5分钟前
Yolanda_Xu完成签到 ,获得积分10
6分钟前
星辰大海应助1762120采纳,获得10
6分钟前
orixero应助余馨怡采纳,获得10
6分钟前
6分钟前
田様应助小橘子吃傻子采纳,获得10
6分钟前
1762120发布了新的文献求助10
7分钟前
7分钟前
7分钟前
8分钟前
andrele发布了新的文献求助10
8分钟前
mengran完成签到,获得积分10
8分钟前
赫连山菡完成签到,获得积分10
9分钟前
9分钟前
sobereva完成签到,获得积分10
9分钟前
10分钟前
余馨怡发布了新的文献求助10
10分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5210860
求助须知:如何正确求助?哪些是违规求助? 4387506
关于积分的说明 13662882
捐赠科研通 4247463
什么是DOI,文献DOI怎么找? 2330295
邀请新用户注册赠送积分活动 1328047
关于科研通互助平台的介绍 1280842