A novel ultra-short-term wind power prediction model jointly driven by multiple algorithm optimization and adaptive selection

算法 均方误差 计算机科学 风力发电 稳健性(进化) 过度拟合 选型 备份 数学优化 人工智能 工程类 人工神经网络 数学 生物化学 统计 化学 电气工程 数据库 基因
作者
Qingcheng Lin,Huiling Cai,Hanwei Liu,Xuefeng Li,Hui Xiao
出处
期刊:Energy [Elsevier BV]
卷期号:288: 129724-129724 被引量:8
标识
DOI:10.1016/j.energy.2023.129724
摘要

Ultrashort-term wind power forecasting with great precision and robustness is essential for improving power quality and reliability management and reducing the cost of rotating backup supply, thus guaranteeing the security and stability of power systems in large-scale grid-connected wind power. This study proposed a novel ultra-short-term wind power prediction model jointly driven by multiple algorithm optimization and adaptive selection. The original wind power sequence is decomposed into smooth subsequences by the optimized variational mode decomposition algorithm. Each sequence is predicted in advance by two outstanding prediction methods. The method with high accuracy is automatically selected for the prediction output of that sequence. The two excellent models are least square support vector machine optimized by improved whale optimization algorithm and hybrid kernel extreme learning machine optimized by sine cosine search-sparrow search algorithm, improving the prediction accuracy and efficiency. Based on three publicly available datasets, the proposed model has more than 41 % percent improvement in root mean square error compared to the current studies and about 20 % percent improvement in root mean square error compared to the proposed models without selection strategy. Combined with the adaptive selection concept, the proposed prediction model can obtain more accurate wind power prediction results with higher prediction accuracy, more substantial prediction generalization, and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懦弱的龙猫完成签到 ,获得积分10
1秒前
3秒前
3秒前
hc完成签到,获得积分10
4秒前
5秒前
搞怪哑铃完成签到,获得积分10
5秒前
小王小王完成签到 ,获得积分10
7秒前
rtpa发布了新的文献求助10
7秒前
一啊呀发布了新的文献求助10
8秒前
10秒前
12秒前
rtpa完成签到,获得积分10
12秒前
13秒前
齐天大圣完成签到,获得积分10
14秒前
YANG发布了新的文献求助10
15秒前
大宝S欧D蜜完成签到,获得积分10
15秒前
16秒前
复杂黑夜发布了新的文献求助10
16秒前
17秒前
小马甲应助越宝采纳,获得10
17秒前
小王小王发布了新的文献求助10
18秒前
可莉完成签到 ,获得积分10
18秒前
橘柚完成签到 ,获得积分10
18秒前
18秒前
NexusExplorer应助被窝采纳,获得10
19秒前
小二郎应助曾经的鸡翅采纳,获得10
19秒前
21秒前
云泽发布了新的文献求助10
22秒前
冷艳紫南发布了新的文献求助10
22秒前
23秒前
24秒前
25秒前
HXX完成签到,获得积分20
25秒前
Orange应助卡拉蹦蹦采纳,获得10
26秒前
科研通AI5应助摔摔77呀采纳,获得10
26秒前
啊啊啊发布了新的文献求助10
27秒前
28秒前
29秒前
abcd_1067完成签到,获得积分10
29秒前
鱼罐罐罐头完成签到,获得积分10
29秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814775
求助须知:如何正确求助?哪些是违规求助? 3358942
关于积分的说明 10398332
捐赠科研通 3076344
什么是DOI,文献DOI怎么找? 1689769
邀请新用户注册赠送积分活动 813254
科研通“疑难数据库(出版商)”最低求助积分说明 767599