A Super-Resolution Diffusion Model for Recovering Bone Microstructure from CT Images

基本事实 尸体痉挛 组内相关 医学 皮尔逊积矩相关系数 图像质量 核医学 人工智能 图像分辨率 尸体 再现性 放射科 计算机科学 图像(数学) 统计 数学 外科
作者
Trevor Chan,Chamith S. Rajapakse
出处
期刊:Radiology [Radiological Society of North America]
卷期号:5 (6) 被引量:2
标识
DOI:10.1148/ryai.220251
摘要

Purpose To use a diffusion-based deep learning model to recover bone microstructure from low-resolution images of the proximal femur, a common site of traumatic osteoporotic fractures. Materials and Methods Training and testing data in this retrospective study consisted of high-resolution cadaveric micro-CT scans (n = 26), which served as ground truth. The images were downsampled prior to use for model training. The model was used to increase spatial resolution in these low-resolution images threefold, from 0.72 mm to 0.24 mm, sufficient to visualize bone microstructure. Model performance was validated using microstructural metrics and finite element simulation–derived stiffness of trabecular regions. Performance was also evaluated across a handful of image quality assessment metrics. Correlations between model performance and ground truth were assessed using intraclass correlation coefficients (ICCs) and Pearson correlation coefficients. Results Compared with popular deep learning baselines, the proposed model exhibited greater accuracy (mean ICC of proposed model, 0.92 vs ICC of next best method, 0.83) and lower bias (mean difference in means, 3.80% vs 10.00%, respectively) across the physiologic metrics. Two gradient-based image quality metrics strongly correlated with accuracy across structural and mechanical criteria (r > 0.89). Conclusion The proposed method may enable accurate measurements of bone structure and strength with a radiation dose on par with current clinical imaging protocols, improving the viability of clinical CT for assessing bone health. Keywords: CT, Image Postprocessing, Skeletal-Appendicular, Long Bones, Radiation Effects, Quantification, Prognosis, Semisupervised Learning Online supplemental material is available for this article. © RSNA, 2023
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文艺鞋子发布了新的文献求助10
刚刚
小强x完成签到,获得积分10
2秒前
办公的牛马完成签到,获得积分10
2秒前
yu完成签到 ,获得积分10
3秒前
Barry完成签到,获得积分10
3秒前
安静发布了新的文献求助10
3秒前
洲洲完成签到,获得积分10
4秒前
ynchendt完成签到,获得积分10
5秒前
Chris完成签到,获得积分10
5秒前
桐桐应助文艺鞋子采纳,获得10
7秒前
孔问筠完成签到,获得积分10
7秒前
冷静惜文完成签到,获得积分10
7秒前
赘婿应助研友_ZG4ml8采纳,获得10
8秒前
浅是宝贝完成签到,获得积分10
8秒前
whatever举报动漫大师求助涉嫌违规
9秒前
大美女完成签到,获得积分10
9秒前
chen完成签到,获得积分10
9秒前
9秒前
笑羽完成签到,获得积分0
10秒前
yunjian1583完成签到,获得积分10
10秒前
三颗板牙完成签到,获得积分10
10秒前
风中的傲安完成签到,获得积分10
11秒前
羽墨完成签到,获得积分10
11秒前
今后应助老阳采纳,获得10
11秒前
踏实的求真完成签到,获得积分10
11秒前
不想写文章完成签到 ,获得积分10
11秒前
酷波er应助赫连紫采纳,获得10
11秒前
Jiayou Zhang完成签到,获得积分10
12秒前
奮斗完成签到,获得积分10
12秒前
上官若男应助徐不言采纳,获得10
12秒前
13秒前
Tristan完成签到 ,获得积分10
13秒前
Orange应助科研通管家采纳,获得10
13秒前
Aowu应助科研通管家采纳,获得10
13秒前
t通应助科研通管家采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
小海应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
Akim应助科研通管家采纳,获得10
13秒前
无花果应助科研通管家采纳,获得10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792699
求助须知:如何正确求助?哪些是违规求助? 3337059
关于积分的说明 10283360
捐赠科研通 3053992
什么是DOI,文献DOI怎么找? 1675728
邀请新用户注册赠送积分活动 803752
科研通“疑难数据库(出版商)”最低求助积分说明 761533