Label-Dependent Graph Neural Network

基本事实 计算机科学 人工神经网络 特征(语言学) 噪音(视频) 节点(物理) 人工智能 混乱 独立性(概率论) 图形 正规化(语言学) 模式识别(心理学) 数据挖掘 数学 理论计算机科学 统计 心理学 哲学 语言学 结构工程 精神分析 工程类 图像(数学)
作者
Yunfei He,Yiwen Zhang,Fei Yang,Dengcheng Yan,Victor S. Sheng
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (2): 2990-3003 被引量:1
标识
DOI:10.1109/tcss.2023.3312395
摘要

Graph neural network (GNN) provides a powerful expressive way to embed graph-structured data, which has been widely applied and spans many fields. This article found an interesting but unreasonable phenomenon in some classical GNNs, namely label confusion. Theoretically, the dependence between prediction label and ground-truth should gradually increase and tend to converge with training epochs. On the contrary, label confusion shows that the dependence between the predicted label and ground-truth is strong first and then weak. This article explains it from the perspective of feature-noise dependence. Specifically, traditional GNN prediction usually assumes that the ground-truth consists of a mutually independent prediction label (dependent on node features) and noise (independent of node features). However, the propagation aggregation mechanism of GNN will integrate irrelevant information from neighboring nodes into the prediction label, resulting in the prediction label no longer being completely dependent on the node feature, or the noise no longer being completely independent of the node feature. Hence, this article proposes a Label-Dependent GNN to alleviate this problem, called LDGNN. LDGNN mainly consists of two limitations, namely feature-noise (the difference between predicted label and ground-truth) independence, and expectation-variance (EV) separation. Specifically, LDGNN introduces the Hilbert-Schmidt independence criterion (HSIC) as a regularization to minimize the dependence between input features and noise. Note that the main reason for adopting HSIC is that it can measure the nonlinear relationship between any two spatial variables. In this way, HSIC can guide GNN to retain more label-dependence information. Then, LDGNN designs an EV separation to centralize nodes within a class and disperse them between classes to further retain label-dependence information. Through these two strategies, the GNN's expression ability can be enhanced. Next, we theoretically prove the essential reason why LDGNN alleviates label confusion and has been verified in experiments. To verify the performance of LDGNN, we apply it to four classical GNN models on three datasets, and experimental results demonstrate the effectiveness of LDGNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助刘刘采纳,获得10
刚刚
刚刚
smj完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
孩子气完成签到,获得积分10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
1秒前
pluto应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
伶俐的若智完成签到,获得积分10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
1秒前
光之战士完成签到 ,获得积分10
1秒前
今后应助科研通管家采纳,获得10
1秒前
活力安筠应助科研通管家采纳,获得10
1秒前
1秒前
Owen应助科研通管家采纳,获得10
2秒前
小乐应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
酷波er应助王大红采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
郎晟完成签到,获得积分10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
2秒前
李健应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
iNk应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4697977
求助须知:如何正确求助?哪些是违规求助? 4067266
关于积分的说明 12574668
捐赠科研通 3766799
什么是DOI,文献DOI怎么找? 2080239
邀请新用户注册赠送积分活动 1108320
科研通“疑难数据库(出版商)”最低求助积分说明 986664