A hand gesture recognition strategy based on virtual dimension increase of EMG

手势识别 手势 计算机科学 人工智能 模式识别(心理学) 语音识别 信号(编程语言) 特征(语言学) 特征向量 计算机视觉 语言学 哲学 程序设计语言
作者
Yuxuan Wang,Ye Tian,Jun Zhu,Haotian She,Yinlai Jiang,Zhihong Jiang,Hiroshi Yokoi
出处
期刊:Cyborg and bionic systems [American Association for the Advancement of Science]
卷期号:5 被引量:1
标识
DOI:10.34133/cbsystems.0066
摘要

The electromyography(EMG) signal is the biocurrent associated with muscle contraction and can be used as the input signal to a myoelectric intelligent bionic hand to control different gestures of the hand. Increasing the number of myoelectric-signal channels can yield richer information of motion intention and improve the accuracy of gesture recognition. However, as the number of acquisition channels increases, its effect on the improvement of the accuracy of gesture recognition gradually diminishes, resulting in the improvement of the control effect reaching a plateau. To address these problems, this paper presents a proposed method to improve gesture recognition accuracy by virtually increasing the number of EMG signal channels. This method is able to improve the recognition accuracy of various gestures by virtually increasing the number of EMG signal channels and enriching the motion intention information extracted from data collected from a certain number of physical channels, ultimately providing a solution to the issue of the recognition accuracy plateau caused by saturation of information from physical recordings. Meanwhile, based on the idea of the filtered feature selection method, a quantitative measure of sample sets (separability of feature vectors [SFV]) derived from the divergence and correlation of the extracted features is introduced. The SFV value can predict the classification effect before performing the classification, and the effectiveness of the virtual-dimension increase strategy is verified from the perspective of feature set differentiability change. Compared to the statistical motion intention recognition success rate, SFV is a more representative and faster measure of classification effectiveness and is also suitable for small sample sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天开心完成签到 ,获得积分10
2秒前
沉静的清涟完成签到,获得积分10
11秒前
李健应助爱笑半莲采纳,获得80
13秒前
16秒前
量子星尘发布了新的文献求助10
22秒前
24秒前
33秒前
Ttimer完成签到,获得积分10
40秒前
蒸馏水完成签到,获得积分10
46秒前
外向的芒果完成签到 ,获得积分10
58秒前
流氓恐龙完成签到,获得积分10
58秒前
量子星尘发布了新的文献求助150
1分钟前
Jasper应助科研通管家采纳,获得150
1分钟前
田様应助科研通管家采纳,获得20
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
1分钟前
在水一方应助剑K采纳,获得10
1分钟前
自然代亦完成签到 ,获得积分10
1分钟前
1分钟前
剑K发布了新的文献求助10
1分钟前
qianci2009完成签到,获得积分0
1分钟前
nicholas完成签到,获得积分10
1分钟前
成就的冬瓜完成签到 ,获得积分10
1分钟前
听话的采蓝完成签到 ,获得积分10
1分钟前
27完成签到 ,获得积分10
1分钟前
licheng完成签到,获得积分10
1分钟前
柴敏完成签到,获得积分20
2分钟前
皇家咖啡完成签到 ,获得积分10
2分钟前
hhh2018687完成签到,获得积分10
2分钟前
等待的幼晴完成签到,获得积分10
2分钟前
十二完成签到 ,获得积分10
2分钟前
2分钟前
lll发布了新的文献求助10
2分钟前
2分钟前
脑洞疼应助季末默相依采纳,获得10
2分钟前
科研通AI6应助lll采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4852155
求助须知:如何正确求助?哪些是违规求助? 4150456
关于积分的说明 12857082
捐赠科研通 3898693
什么是DOI,文献DOI怎么找? 2142559
邀请新用户注册赠送积分活动 1162325
关于科研通互助平台的介绍 1062725