CapsFormer: A Novel Bearing Intelligent Fault Diagnosis Framework With Negligible Speed Change Under Small-Sample Conditions

稳健性(进化) 方位(导航) 断层(地质) 计算机科学 短时傅里叶变换 特征提取 人工智能 时域 模式识别(心理学) 工程类 傅里叶变换 傅里叶分析 计算机视觉 数学 数学分析 地质学 地震学 基因 生物化学 化学
作者
Yong Xu,Hui Tao,Weihua Li,Yong Zhong
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:3
标识
DOI:10.1109/tim.2023.3318693
摘要

In actual industrial production, the load and speed of bearings are complex and changeable. However, most existing research on bearing fault diagnosis is based on constant speed conditions, and studies on bearing fault diagnosis at time-varying speeds are limited. Additionally, the scarcity of fault data further hinders practical applications of theoretical models developed so far. Thus, CapsFormer, a novel bearing intelligent fault diagnosis framework with negligible speed change under small-sample conditions, is proposed in this study. This framework combines the power of capsule network (CapsNet) and Transformer. It converts 1D time-domain samples into 2D time-frequency representations (TFRs) through short-time Fourier transform (STFT). Then it employs the idea of CapsNet to extract ordered spatial features from the TFRs of samples. On this basis, combined with the self-attention learning mechanism, it excavates deep fault features to promote the correct identification of bearing fault types by the model. Through experiments conducted under constant speed and time-varying speed conditions, the model was validated, demonstrating its superior performance compared to six other deep learning methods in bearing fault diagnosis under small sample sizes. These results strongly indicate the robustness of CapsFormer in addressing speed changes during bearing fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助big龙采纳,获得10
刚刚
1秒前
科研通AI5应助博修采纳,获得30
1秒前
3秒前
烟花应助段玉杰采纳,获得10
3秒前
白兰鸽发布了新的文献求助10
4秒前
5秒前
啊啊啊发布了新的文献求助10
6秒前
眼睛大又蓝完成签到,获得积分10
9秒前
zhuzhu007发布了新的文献求助20
10秒前
100完成签到,获得积分10
11秒前
Wise完成签到,获得积分10
11秒前
15秒前
15秒前
15秒前
yowgo完成签到,获得积分10
16秒前
16秒前
17秒前
makabaka发布了新的文献求助10
18秒前
big龙发布了新的文献求助10
20秒前
清脆寻梅完成签到,获得积分10
20秒前
21秒前
郭梓韵发布了新的文献求助10
21秒前
swg发布了新的文献求助10
21秒前
传奇3应助Quinta采纳,获得10
22秒前
西西完成签到,获得积分10
22秒前
24秒前
懒癌晚期完成签到,获得积分10
25秒前
27秒前
勤劳的雨文完成签到,获得积分10
28秒前
博修发布了新的文献求助30
29秒前
嘻嘻嘻完成签到 ,获得积分10
30秒前
30秒前
段玉杰发布了新的文献求助10
31秒前
我是老大应助瑞曦采纳,获得10
34秒前
桃子完成签到,获得积分20
35秒前
啊啊啊发布了新的文献求助10
35秒前
37秒前
保持理智完成签到,获得积分10
38秒前
小蘑菇应助博修采纳,获得30
38秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799078
求助须知:如何正确求助?哪些是违规求助? 3344805
关于积分的说明 10321507
捐赠科研通 3061233
什么是DOI,文献DOI怎么找? 1680100
邀请新用户注册赠送积分活动 806899
科研通“疑难数据库(出版商)”最低求助积分说明 763445