PhiUSIIL: A diverse security profile empowered phishing URL detection framework based on similarity index and incremental learning

网络钓鱼 计算机科学 相似性(几何) 索引(排版) 构造(python库) 情报检索 数据挖掘 万维网 人工智能 互联网 机器学习 图像(数学) 程序设计语言
作者
Arvind Prasad,Shalini Chandra
出处
期刊:Computers & Security [Elsevier]
卷期号:136: 103545-103545 被引量:14
标识
DOI:10.1016/j.cose.2023.103545
摘要

With the proliferation of the World Wide Web and the increasing sophistication of cyber threats, phishing attacks have emerged as a significant concern for individuals and organizations alike. Phishing attacks, commonly executed through deceptive URLs, aim to deceive users into divulging sensitive information, leading to financial loss, identity theft, or compromising sensitive data. It continues to pose a significant threat to individuals and organizations in today's digital landscape, necessitating the development of effective and efficient detection frameworks. This article presents PhiUSIIL, a Phishing URL detection framework based on Similarity Index and Incremental Learning. The similarity index helps effectively identify visual similarity-based attacks such as zero-width characters, homograph, punycode, homophone, bit squatting, and combosquatting attacks. The incremental learning approach allows the framework to continuously update its knowledge base with new data. Further, implementing diverse security profiles accommodates diverse security requirements of users or organizations. PhiUSIIL extracts URL features, downloads the webpage from URL to extract HTML features, and derives new features from existing information to construct a phishing URL dataset, named PhiUSIIL phishing URL dataset, encompassing 134850 legitimate and 100945 phishing URLs. The proposed phishing URL detection framework has extensively experimented with the PhiUSIIL phishing URL dataset. The constructed dataset helps to improve the detection accuracy when used during pre-training approach. PhiUSIIL achieved an accuracy of 99.24% when experimented with a fully incremental training approach and 99.79% when experimented with a pre-training approach. The experimental results show its effectiveness and ensure the framework remains effective and up-to-date against emerging and sophisticated phishing techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
杨洋完成签到,获得积分10
刚刚
刚刚
1秒前
YYY发布了新的文献求助10
1秒前
FashionBoy应助我不知道啊采纳,获得20
1秒前
2秒前
2秒前
大模型应助Banson采纳,获得10
2秒前
稳重曼柔发布了新的文献求助10
2秒前
2秒前
595完成签到,获得积分10
2秒前
传奇3应助谭金钰采纳,获得10
3秒前
3秒前
东黎发布了新的文献求助10
3秒前
湘军西进完成签到,获得积分10
3秒前
3秒前
认真努力发SCI完成签到,获得积分20
4秒前
清欢发布了新的文献求助10
4秒前
Li应助上心采纳,获得10
4秒前
科目二三次郎完成签到,获得积分10
5秒前
5秒前
大小姐不是亣灲妎完成签到,获得积分10
6秒前
yan完成签到,获得积分10
7秒前
黑大帅完成签到,获得积分10
7秒前
8秒前
8秒前
清清清完成签到 ,获得积分10
8秒前
爆米花发布了新的文献求助10
8秒前
明熙完成签到,获得积分10
9秒前
Tania完成签到,获得积分10
9秒前
王豆豆完成签到,获得积分20
9秒前
星辰大海应助璟晔采纳,获得10
10秒前
10秒前
11秒前
11秒前
11秒前
11秒前
顾一纯完成签到,获得积分10
11秒前
丘比特应助吕志才采纳,获得10
11秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340559
求助须知:如何正确求助?哪些是违规求助? 4476999
关于积分的说明 13933590
捐赠科研通 4372846
什么是DOI,文献DOI怎么找? 2402602
邀请新用户注册赠送积分活动 1395511
关于科研通互助平台的介绍 1367572