Burden and risk factors of depression in seniors from 1990 to 2021: a multi-database study based on EMR mining methods

作者
Site Xu,Mu Sun,Yu Xiang
出处
期刊:Translational Psychiatry [Springer Nature]
卷期号:15 (1): 414-414
标识
DOI:10.1038/s41398-025-03636-5
摘要

Depression in seniors is a growing public health concern worldwide. Despite the rising prevalence of depression in this demographic, comprehensive data on its burden and trends over an extended period remain limited. This study aims to assess the trends in the burden of depression among seniors from 1990 to 2021, utilizing the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) database, and to further explore the risk factors using China Health and Retirement Longitudinal Study (CHARLS) database and National Health and Nutrition Examination Survey (NHANES) database. We utilized data from the GBD 2021, reporting incidence and disability-adjusted life years (DALYs) per 100,000 population, average annual percentage change (AAPC), and risk factors at global, and regional levels. Trends were analyzed by age, sex, and social development index. Joinpoint regression identified significant changes in global trends. We established an interpretable machine learning (ML) model with high efficiency and robustness that identifies depression based on CHARLS (2015, 2018, &2020) and NHANES (2013-2020.3). We chose a best-performing eXtreme Gradient Boosting (XGB) with Genetic Algorithm (GA) for identification, and used SHapley Additive exPlanation (SHAP) to illustrate the potential risk factors. From 1990 to 2021, the overall global incidence of depression among seniors remained broadly stable (AAPC 0.01, 95% CI -0.07 to 0.08), although marked changes emerged in specific regions and population subgroups. The incidence of depressive disorders increased globally for males (AAPC 0.06 [95% CI -0.02 to 0.15]) while it decreased for females (AAPC -0.01 [95% CI -0.09 to 0.07]). Regional analysis showed the highest incidence rates in low-SDI countries, while middle-SDI countries experienced the most significant increases in the burden of depression (AAPC 0.25 [95% CI 0.17 to 0.34]). Risk factor analysis using machine learning models identified key predictors of depression in elderly populations in both China and the United States. The burden of depression among seniors has significantly shifted globally, with marked regional and demographic variations. These findings underscore the urgent need for targeted interventions, policy modifications, and early screening programs to address the rising burden of depression in this vulnerable age group. The use of advanced machine learning models provides valuable insights into the risk factors, facilitating the development of more effective and tailored intervention strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
重要灵竹发布了新的文献求助10
刚刚
古猫宁发布了新的文献求助30
1秒前
江逾白完成签到,获得积分10
2秒前
科研小狗完成签到 ,获得积分10
2秒前
热心傲珊发布了新的文献求助10
3秒前
3秒前
3秒前
ryan1300完成签到 ,获得积分10
5秒前
slj发布了新的文献求助30
6秒前
6秒前
wang完成签到,获得积分10
7秒前
pups发布了新的文献求助10
8秒前
111完成签到,获得积分10
8秒前
wyy1990给wyy1990的求助进行了留言
8秒前
所所应助zz采纳,获得10
8秒前
赘婿应助zz采纳,获得10
8秒前
10秒前
等待毛豆发布了新的文献求助10
11秒前
11秒前
spyker完成签到,获得积分10
12秒前
13秒前
14秒前
pancake发布了新的文献求助50
14秒前
14秒前
石头完成签到 ,获得积分10
15秒前
调皮雨灵完成签到,获得积分10
17秒前
17秒前
范良聪完成签到,获得积分10
17秒前
科目三应助椰椰采纳,获得30
18秒前
18秒前
秋蝶发布了新的文献求助10
18秒前
spyker发布了新的文献求助10
18秒前
19秒前
20秒前
20秒前
21秒前
李龙发布了新的文献求助10
22秒前
万能图书馆应助维生素采纳,获得10
22秒前
Sora发布了新的文献求助10
23秒前
哈哈完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5533615
求助须知:如何正确求助?哪些是违规求助? 4621826
关于积分的说明 14580608
捐赠科研通 4561998
什么是DOI,文献DOI怎么找? 2499763
邀请新用户注册赠送积分活动 1479492
关于科研通互助平台的介绍 1450600