Deep learning framework for bronchoscopic diagnosis of burn inhalation injury

作者
K. Zhang,Suveer Singh
出处
期刊:Burns [Elsevier]
卷期号:52 (1): 107770-107770
标识
DOI:10.1016/j.burns.2025.107770
摘要

Burn inhalation injury (BII) increases mortality and morbidity in burns patients. Accurate bronchoscopic grading, as the gold standard diagnostic modality, is important for prognostication and to optimize management. However, the most common currently used clinical grading system (abbreviated injury score, AIS) for BII, as a standardized grading method, uses manual judgement of visual features of the tracheobronchial mucosa. This is subjective and has limitations in classification accuracy, and reliability. A better, automated bronchoscopic grading system would have great clinical value. Hence, this study tested the predictive capability of a supervised deep learning technology-based rating method for bronchoscopically diagnosed BII. A pre-trained vision transformer model (ViT) was fine-tuned to automatically grade burn inhalation injury from clinical bronchoscopy recordings of 36 patients (1089 quality-controlled frames) at the London Burns centre. Labelled images were differentiated into training, validation, and test sets (70:20:10). The model was then applied to 2 tasks;1. Identification of the severity grade (modified simple system -none, mild, moderate, severe) and 2. Binary - presence or not of BII. Performance indicators (accuracy, precision, F1 and recall) were measured. Then, the ViT was developed further by transfer learning and data augmentation techniques, and predictive performance retested. Test sets of images in the trained model achieved 98.17 % accuracy, 98.15 % F1 score, 98.29 % precision and 98.17 % recall. For task 2, the enhanced model achieved an accuracy of 98.17 %, F1-score 98.21 %, precision 98.36 %, recall 98.17 %. Compared to traditional human visually graded scoring systems, and even other deep learning model-based studies, our method demonstrated a very promising predictive deep learning framework for application in grading inhalation injuries more accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
默问应助姚老表采纳,获得50
1秒前
xiaohui完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
猫猫博士完成签到 ,获得积分10
1秒前
大模型应助嘟嘟嘟嘟嘟采纳,获得10
2秒前
自由的藏鸟完成签到,获得积分10
3秒前
小马甲应助Yam采纳,获得10
3秒前
科研小呆瓜完成签到,获得积分10
3秒前
卿卿完成签到,获得积分10
3秒前
4秒前
4秒前
所所应助自信的涛采纳,获得10
5秒前
王旭发布了新的文献求助10
6秒前
科研通AI6.1应助nicolight采纳,获得10
7秒前
111完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
8秒前
解语花031发布了新的文献求助10
8秒前
8秒前
小张同学完成签到,获得积分20
9秒前
汉堡包应助潇洒的怜阳采纳,获得10
9秒前
科目三应助潇洒的怜阳采纳,获得10
9秒前
9秒前
不要读文献完成签到,获得积分10
9秒前
柠檬01210发布了新的文献求助10
10秒前
lihao123完成签到,获得积分10
10秒前
Go发布了新的文献求助10
10秒前
qingqing关注了科研通微信公众号
10秒前
货哈货哈完成签到,获得积分10
10秒前
10秒前
司马绮山发布了新的文献求助10
10秒前
NexusExplorer应助Hiiiiii采纳,获得10
11秒前
11秒前
11秒前
12秒前
李小雪完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5769099
求助须知:如何正确求助?哪些是违规求助? 5578176
关于积分的说明 15420439
捐赠科研通 4902827
什么是DOI,文献DOI怎么找? 2637955
邀请新用户注册赠送积分活动 1585825
关于科研通互助平台的介绍 1540963