Comparative analysis of strategies for multi-step ahead wind power forecasting for different forecast horizons and wind power datasets

作者
Andrea Cammarano
标识
DOI:10.1177/09576509251404793
摘要

In light of the stochastic nature of wind, the main obstacle to reliable penetration of wind power into the power grid is its variability. An accurate multi-step prediction of wind power is the most efficient way to address this issue, along with challenges in wind power management and maintenance. Several strategies have been presented in the literature for multi-step ahead wind power prediction, however, a comprehensive comparison of these strategies has not been performed to determine how outliers in power datasets influence the accuracy of multi-step ahead predictions at different forecasting horizons. To fill this gap, in this study, by reviewing the existing strategies, three main approaches including the recursive, direct, and multi-input multi-output (MIMO) strategies are investigated using two real-world datasets from two wind turbines in Turkey and Scotland. A hybrid prediction method based on application of the Isolation Forest for outlier treatment, long short-term memory (LSTM) as the core of the prediction model and a new hyperparameter optimization algorithm for the tuning of the LSTM model is used for predictions in different strategies. According to the results of the experiments (1) in two-step ahead wind power forecasting, all strategies produce similar results, in both wind turbines; (2) in all forecast horizons of more than two steps ahead, the MIMO approach is best when the dataset does not contain any outliers – however, when there are outliers, the direct approach performs better; (3) in both datasets, the recursive approach to wind power forecasting produces the highest error rates.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
西风漂流应助缥缈的青旋采纳,获得10
1秒前
jie发布了新的文献求助10
1秒前
1秒前
所所应助ZhouZhou采纳,获得10
1秒前
2秒前
3秒前
3秒前
碧蓝丹烟发布了新的文献求助10
3秒前
小番茄发布了新的文献求助10
4秒前
Ava应助Ammon采纳,获得10
4秒前
小马甲应助清秀的小蝴蝶采纳,获得10
5秒前
5秒前
魔幻的溪流完成签到 ,获得积分10
5秒前
5秒前
暴雨彩虹完成签到,获得积分20
5秒前
jie完成签到,获得积分10
5秒前
5秒前
Huan发布了新的文献求助10
6秒前
乐乐应助45度人采纳,获得10
6秒前
6秒前
6秒前
luxia完成签到 ,获得积分10
6秒前
6秒前
可靠的远望完成签到,获得积分10
7秒前
小行星发布了新的文献求助20
7秒前
ZZY发布了新的文献求助10
7秒前
金咪发布了新的文献求助10
8秒前
汉堡包应助fyc采纳,获得10
9秒前
梨有理想完成签到 ,获得积分10
9秒前
1762120发布了新的文献求助10
9秒前
Guochunbao完成签到,获得积分10
9秒前
zhq发布了新的文献求助10
9秒前
天天快乐应助modesty采纳,获得10
10秒前
10秒前
aki应助无心的不平采纳,获得10
10秒前
11秒前
12秒前
科研通AI6应助榴莲麦旋风采纳,获得10
12秒前
YeHan完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468825
求助须知:如何正确求助?哪些是违规求助? 4572157
关于积分的说明 14333943
捐赠科研通 4498964
什么是DOI,文献DOI怎么找? 2464789
邀请新用户注册赠送积分活动 1453376
关于科研通互助平台的介绍 1427939