内科学
心脏病学
急性冠脉综合征
医学
人工智能
计算机科学
心肌梗塞
作者
Mitchel Molenaar,Berto J. Bouma,Folkert W. Asselbergs,Niels Verouden,Jasper L. Selder,Steven A.J. Chamuleau,Mark J. Schuuring
标识
DOI:10.1093/ehjdh/ztae001
摘要
The European Society of Cardiology guidelines recommend risk stratification with limited clinical parameters such as left ventricular (LV) function in patients with chronic coronary syndrome (CCS). Machine learning (ML) methods enable an analysis of complex datasets including transthoracic echocardiography (TTE) studies. We aimed to evaluate the accuracy of ML using clinical and TTE data to predict all-cause 5-year mortality in patients with CCS and to compare its performance with traditional risk stratification scores.
科研通智能强力驱动
Strongly Powered by AbleSci AI