亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multimodal Co-attention Transformer for Video-Based Personality Understanding

可解释性 模式 计算机科学 人工智能 人格 机器学习 可视化 多媒体 心理学 社会心理学 社会科学 社会学
作者
Mingwei Sun,Kunpeng Zhang
标识
DOI:10.1109/bigdata59044.2023.10386376
摘要

Video has emerged as a pervasive medium for communication, entertainment, and information sharing. With the consumption of video content continuing to increase rapidly, understanding the impact of visual narratives on personality has become a crucial area of research. While text-based personality understanding has been extensively studied in the literature, video-based personality prediction remains relatively under-explored. Existing approaches to video-based personality prediction can be broadly categorized into two directions: learning a joint representation of audio and visual information using fully-connected feed-forward networks, and separating a video into its individual modalities (text, image, and audio), training each modality independently, and then ensembling the results for subsequent personality prediction. However, both approaches have notable limitations: ignoring complex interactions between visual and audio components, or considering all three modalities but not in a joint manner. Furthermore, all methods require high computational costs as they require high-resolution images to train. In this paper, we propose a novel Multimodal Co-attention Transformer neural network for video-based affect prediction. Our approach simultaneously models audio, visual, and text representations, as well as their inter-relations, to achieve accurate and efficient predictions. We demonstrate the effectiveness of our method via extensive experiments on a real-world dataset: First Impressions. Our results show that the proposed model outperforms state-of-the-art approaches while maintaining high computational efficiency. In addition to our performance evaluation, we also conduct interpretability analyses to investigate the contribution across different levels. Our findings reveal valuable insights into personality predictions. The implementation is available at: https://github.com/nestor-sun/mcoattention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3719left完成签到,获得积分10
18秒前
852应助勇往直前采纳,获得10
29秒前
37秒前
勇往直前发布了新的文献求助10
42秒前
科研通AI2S应助古月采纳,获得10
1分钟前
huajinoob发布了新的文献求助30
2分钟前
老冯完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
車侖完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
5分钟前
6分钟前
6分钟前
汉堡包应助huajinoob采纳,获得10
6分钟前
7分钟前
7分钟前
ZCYBEYOND完成签到 ,获得积分10
7分钟前
ling361完成签到,获得积分10
7分钟前
8分钟前
little完成签到,获得积分10
8分钟前
8分钟前
8分钟前
lyp完成签到 ,获得积分10
8分钟前
9分钟前
9分钟前
jyy发布了新的文献求助200
9分钟前
科目三应助科研通管家采纳,获得50
10分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
科研通AI2S应助科研通管家采纳,获得10
12分钟前
斯文败类应助科研通管家采纳,获得10
12分钟前
文献搬运工完成签到 ,获得积分10
13分钟前
claud完成签到 ,获得积分0
13分钟前
小程同学完成签到,获得积分10
13分钟前
13分钟前
meng完成签到,获得积分10
13分钟前
huajinoob发布了新的文献求助10
13分钟前
14分钟前
huajinoob发布了新的文献求助10
15分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775963
求助须知:如何正确求助?哪些是违规求助? 3321534
关于积分的说明 10206160
捐赠科研通 3036604
什么是DOI,文献DOI怎么找? 1666365
邀请新用户注册赠送积分活动 797395
科研通“疑难数据库(出版商)”最低求助积分说明 757805