Multi-scale Structural Graph Convolutional Network for Skeleton-based Action Recognition

计算机科学 骨架(计算机编程) 动作识别 人工智能 模式识别(心理学) 图形 理论计算机科学 程序设计语言 班级(哲学)
作者
Sungjun Jang,Heansung Lee,Woo Jin Kim,Jungho Lee,Sungmin Woo,Sangyoun Lee
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (8): 7244-7258 被引量:3
标识
DOI:10.1109/tcsvt.2024.3375512
摘要

Graph convolutional networks (GCNs) have attracted considerable interest in skeleton-based action recognition. Existing GCN-based models have proposed methods to learn dynamic graph topologies generated from the feature information of vertices to capture inherent relationships. However, these models have two main limitations. Firstly, they struggle to effectively utilize high-dimensional or structural information, which limits their capacity for feature representation and consequently hinders performance improvement. Secondly, among these models, the multi-scale methods that aggregate information at different scales often over-capture unnecessary relationships between vertices. This leads to an over-smoothing problem where smoothed features are extracted, making it difficult to distinguish the features of each vertex. To address these limitations, we propose the multi-scale structural graph convolutional network (MSS-GCN) for skeleton-based action recognition. Within the MSS-GCN framework, the common intersection graph convolution (CI-GC) leverages the overlapped neighbor information, indicating the overlap between neighboring vertices for a given pair of root vertices. The graph topology of CI-GC is designed to compute the structural correlation between neighboring vertices corresponding to each hop, thereby enriching the context of inter-vertex relationships. Then, our proposed multi-scale spatio-temporal modeling aggregates local-global features to provide a comprehensive representation. In addition, we propose a Graph Weight Annealing (GWA) method, which is a graph scheduling method to mitigate the over-smoothing caused by multi-scale aggregation. By varying the importance between a vertex and its neighbors, we demonstrate that the over-smoothing problem can be effectively mitigated. Moreover, our proposed GWA method can easily be adapted to different GCN models to enhance performance. Combining the MSS-GCN model and the GWA method, we propose a powerful feature extractor that effectively classifies actions for skeleton-based action recognition in various datasets. We evaluate our approach on three benchmark datasets: NTU RGB+D, NTU RGB+D 120, and NW-UCLA. The proposed MSS-GCN achieves state-of-the-art performance on all three datasets, further validating the effectiveness of our approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
we1完成签到,获得积分10
刚刚
JamesPei应助雨纷纷采纳,获得10
刚刚
荼白完成签到 ,获得积分10
刚刚
sssssssssss完成签到,获得积分10
1秒前
Luna完成签到 ,获得积分10
1秒前
QRE发布了新的文献求助20
1秒前
今后应助关关采纳,获得10
1秒前
风中的跳跳糖完成签到,获得积分10
1秒前
2秒前
魔幻的砖头完成签到,获得积分10
2秒前
科研通AI5应助海鲜汤采纳,获得10
2秒前
英姑应助nnnd77采纳,获得10
2秒前
领导范儿应助徐振阳采纳,获得10
2秒前
2秒前
MT完成签到 ,获得积分10
2秒前
寻雾启事发布了新的文献求助10
3秒前
勤恳完成签到,获得积分10
4秒前
4秒前
4秒前
Sally完成签到,获得积分10
4秒前
无情的菲鹰完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
5秒前
欠虐宝宝完成签到 ,获得积分10
5秒前
全或无完成签到,获得积分10
7秒前
高兴的半仙完成签到,获得积分10
7秒前
8秒前
8秒前
斯文败类应助ayuelei采纳,获得10
8秒前
Owen应助鲨鱼游泳教练采纳,获得10
8秒前
8秒前
8秒前
烟花应助鲨鱼游泳教练采纳,获得10
8秒前
慕青应助鲨鱼游泳教练采纳,获得10
8秒前
8秒前
打打应助鲨鱼游泳教练采纳,获得10
8秒前
桐桐应助鲨鱼游泳教练采纳,获得10
8秒前
脑洞疼应助鲨鱼游泳教练采纳,获得10
8秒前
高分求助中
Organic Chemistry 30086
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
yolo算法-游泳溺水检测数据集 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4296368
求助须知:如何正确求助?哪些是违规求助? 3822085
关于积分的说明 11966285
捐赠科研通 3464125
什么是DOI,文献DOI怎么找? 1900033
邀请新用户注册赠送积分活动 948126
科研通“疑难数据库(出版商)”最低求助积分说明 850654