已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-scale Structural Graph Convolutional Network for Skeleton-based Action Recognition

计算机科学 骨架(计算机编程) 动作识别 人工智能 模式识别(心理学) 图形 理论计算机科学 程序设计语言 班级(哲学)
作者
Sungjun Jang,Heansung Lee,Woo Jin Kim,Jungho Lee,Sungmin Woo,Sangyoun Lee
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (8): 7244-7258 被引量:3
标识
DOI:10.1109/tcsvt.2024.3375512
摘要

Graph convolutional networks (GCNs) have attracted considerable interest in skeleton-based action recognition. Existing GCN-based models have proposed methods to learn dynamic graph topologies generated from the feature information of vertices to capture inherent relationships. However, these models have two main limitations. Firstly, they struggle to effectively utilize high-dimensional or structural information, which limits their capacity for feature representation and consequently hinders performance improvement. Secondly, among these models, the multi-scale methods that aggregate information at different scales often over-capture unnecessary relationships between vertices. This leads to an over-smoothing problem where smoothed features are extracted, making it difficult to distinguish the features of each vertex. To address these limitations, we propose the multi-scale structural graph convolutional network (MSS-GCN) for skeleton-based action recognition. Within the MSS-GCN framework, the common intersection graph convolution (CI-GC) leverages the overlapped neighbor information, indicating the overlap between neighboring vertices for a given pair of root vertices. The graph topology of CI-GC is designed to compute the structural correlation between neighboring vertices corresponding to each hop, thereby enriching the context of inter-vertex relationships. Then, our proposed multi-scale spatio-temporal modeling aggregates local-global features to provide a comprehensive representation. In addition, we propose a Graph Weight Annealing (GWA) method, which is a graph scheduling method to mitigate the over-smoothing caused by multi-scale aggregation. By varying the importance between a vertex and its neighbors, we demonstrate that the over-smoothing problem can be effectively mitigated. Moreover, our proposed GWA method can easily be adapted to different GCN models to enhance performance. Combining the MSS-GCN model and the GWA method, we propose a powerful feature extractor that effectively classifies actions for skeleton-based action recognition in various datasets. We evaluate our approach on three benchmark datasets: NTU RGB+D, NTU RGB+D 120, and NW-UCLA. The proposed MSS-GCN achieves state-of-the-art performance on all three datasets, further validating the effectiveness of our approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丁丁完成签到,获得积分20
刚刚
我爱猪猪发布了新的文献求助10
2秒前
WK完成签到,获得积分10
4秒前
4秒前
4秒前
大帅比完成签到 ,获得积分10
6秒前
tjnksy完成签到,获得积分10
7秒前
晚意完成签到 ,获得积分10
7秒前
丁丁发布了新的文献求助10
8秒前
9秒前
执着谷梦发布了新的文献求助10
11秒前
11秒前
安详怜蕾完成签到,获得积分10
12秒前
13秒前
顾矜应助小章鱼采纳,获得10
13秒前
yogurt完成签到 ,获得积分10
14秒前
安详怜蕾发布了新的文献求助10
14秒前
14秒前
CoCo完成签到 ,获得积分10
16秒前
田所浩二完成签到 ,获得积分10
17秒前
司徒寒烟发布了新的文献求助10
18秒前
海侠子发布了新的文献求助10
18秒前
无聊的老姆完成签到 ,获得积分10
18秒前
19秒前
wocao完成签到 ,获得积分10
20秒前
执着谷梦完成签到,获得积分10
20秒前
myg123完成签到 ,获得积分10
21秒前
22秒前
wanci应助宇宙采纳,获得10
24秒前
Johnson完成签到 ,获得积分10
25秒前
Sylvia_J完成签到 ,获得积分10
26秒前
27秒前
27秒前
学不动了完成签到,获得积分10
28秒前
DYXX完成签到,获得积分10
28秒前
29秒前
Carrots完成签到 ,获得积分10
29秒前
海侠子完成签到,获得积分10
29秒前
李健的粉丝团团长应助cjh采纳,获得10
31秒前
37秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Politiek-Politioneele Overzichten van Nederlandsch-Indië. Bronnenpublicatie, Deel II 1929-1930 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819819
求助须知:如何正确求助?哪些是违规求助? 3362720
关于积分的说明 10418416
捐赠科研通 3080964
什么是DOI,文献DOI怎么找? 1694903
邀请新用户注册赠送积分活动 814788
科研通“疑难数据库(出版商)”最低求助积分说明 768482