A RRT based path planning scheme for multi-DOF robots in unstructured environments

方案(数学) 运动规划 路径(计算) 机器人 计算机科学 模拟 人工智能 实时计算 工程类 数学 计算机网络 数学分析
作者
Meilin Kang,Qinhu Chen,Zeming Fan,Chuan Yu,Yixin Wang,Xiaojun Yu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:218: 108707-108707 被引量:17
标识
DOI:10.1016/j.compag.2024.108707
摘要

Path planning for robots in complex orchard environments is crucial to ensure efficient and safe completion of harvesting tasks. The use of flexible multi-degree-of-freedom (multi-DOF) robots further adds to the complexity of the task. Therefore, based on a rapidly exploring random tree (RRT) algorithm, a bidirectional path planning method adjusting the expansion direction and dynamic step (EDDS-bi-RRT) according to the scene information is proposed to improve the planning efficiency of multi-DOF robots in the configuration space (C-space). Two improvements are introduced to the algorithm: (1) The algorithm begins by designating the search's starting point as the tree's root node. Subsequently, it generates an extended tree by continuously adding leaf nodes through sampling. The expansion direction is set from the nearest node to the target point, and the cosine and sine factors are introduced to adjust the direction when the sampling point collides with obstacles, and the extended trees will be exchanged for growth from the target point to the nearest node accordingly. (2) The minimum distance between the robot links and obstacles is the maximum safe distance d with which the robot links can move in the workspace. Then, d is converted to the expansion step in the high-dimensional C-space by introducing the matrix operator norm. This way, the explore efficiency is improved significantly in complex environments while the computational time and the path length decrease. Simulations in different scenarios are performed based on a 17-DOF humanoid dual-arm apple harvesting robot developed in our lab, and the results show that the proposed algorithm presents a higher efficiency and shorter planning time and path length compared with previous similar algorithms. In addition, experiments in the lab orchard environments are also performed to indicate that the EDDS-bi-RRT algorithm can be applied to generate collision-free path points for multi-DOF robots in unstructured environments safely and effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zz完成签到,获得积分10
2秒前
4秒前
boluohu发布了新的文献求助30
4秒前
科目三应助juanjie采纳,获得10
6秒前
lgj应助Cilvord采纳,获得10
6秒前
专注寻菱完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
代志豪发布了新的文献求助10
9秒前
狂野的钻石完成签到 ,获得积分10
9秒前
fly完成签到,获得积分10
10秒前
ark861023发布了新的文献求助10
10秒前
Petrichor发布了新的文献求助10
10秒前
11111完成签到,获得积分20
11秒前
情怀应助故意的秋烟采纳,获得10
12秒前
bella发布了新的文献求助10
13秒前
lgj应助周小鱼采纳,获得10
13秒前
15秒前
含蓄锦程完成签到,获得积分10
16秒前
11111发布了新的文献求助30
16秒前
19秒前
111完成签到,获得积分10
19秒前
健壮的花瓣完成签到 ,获得积分10
20秒前
bkagyin应助ys采纳,获得10
22秒前
23秒前
艾瑞克完成签到,获得积分10
24秒前
Happy完成签到 ,获得积分10
24秒前
26秒前
Petrichor完成签到,获得积分10
27秒前
28秒前
大模型应助范雅寒采纳,获得10
28秒前
juanjie完成签到,获得积分10
30秒前
32秒前
Holland应助小旭不会飞采纳,获得20
32秒前
如来发布了新的文献求助20
33秒前
陈乐宁2024完成签到,获得积分10
34秒前
打打应助司马含卉采纳,获得10
34秒前
钟小凯完成签到 ,获得积分10
34秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
CAR T-Cell, An Issue of Hematology/Oncology Clinics of North America 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831677
求助须知:如何正确求助?哪些是违规求助? 3373888
关于积分的说明 10481989
捐赠科研通 3093821
什么是DOI,文献DOI怎么找? 1703059
邀请新用户注册赠送积分活动 819267
科研通“疑难数据库(出版商)”最低求助积分说明 771375