摘要
Chapter 13 Electrospun Nanofiber-Based Water-Induced Electric Generation Zhaoyang Sun, Zhaoyang Sun Donghua University, College of Textiles, Key Laboratory of Textile Science & Technology, Ministry of Education, 2999 Renmin North Road, Songjiang District, Shanghai, 201620 ChinaSearch for more papers by this authorLiming Wang, Liming Wang Donghua University, College of Textiles, Key Laboratory of Textile Science & Technology, Ministry of Education, 2999 Renmin North Road, Songjiang District, Shanghai, 201620 ChinaSearch for more papers by this author Zhaoyang Sun, Zhaoyang Sun Donghua University, College of Textiles, Key Laboratory of Textile Science & Technology, Ministry of Education, 2999 Renmin North Road, Songjiang District, Shanghai, 201620 ChinaSearch for more papers by this authorLiming Wang, Liming Wang Donghua University, College of Textiles, Key Laboratory of Textile Science & Technology, Ministry of Education, 2999 Renmin North Road, Songjiang District, Shanghai, 201620 ChinaSearch for more papers by this author Book Editor(s):Liming Wang, Liming Wang Donghua University, 2999 North Renmin Road, Songjiang District, Shanghai, 200051 ChinaSearch for more papers by this authorXiaohong Qin, Xiaohong Qin Donghua University, 2999 North Renmin Road, Songjiang District, Shanghai, 200051 ChinaSearch for more papers by this author First published: 09 February 2024 https://doi.org/10.1002/9783527841479.ch13 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary Water, one of the most important sources existing on our earth plays vital and essential roles in all aspects from basic physiological reactions in cells, and daily lives to industrial processes. Water-induced electric generation, which converts energy in water to electricity, is a promising technology for next-generation energy conversion. Electrospun nanofibers take advantage of their high-specific area and porous structure and are a good candidate to construct the moist-electric generators. In this chapter, we have discussed this technology in two systems, water-induced electric system and moist-induced electric system, constructed using electrospun nanofibers. Also, each aspect is discussed in four parts including, device setup, materials selection principle, mechanisms, and application. References Tentzeris , M.M. , Georgiadis , A. , and Roselli , L. ( 2014 ). Energy harvesting and scavenging . Proceedings of the IEEE 102 : 1644 – 1648 . 10.1109/JPROC.2014.2361599 Web of Science®Google Scholar Xue , J.J. , Wu , T. , Dai , Y.Q. , and Xia , Y.N. ( 2019 ). Electrospinning and electrospun nanofibers: methods, materials, and applications . Chemical Reviews 119 : 5298 – 5415 . 10.1021/acs.chemrev.8b00593 CASPubMedWeb of Science®Google Scholar Tao , X.J. , Zhou , Y.M. , Qi , K. et al. ( 2022 ). Wearable textile triboelectric generator based on nanofiber core-spun yarn coupled with electret effect . Journal of Colloid and Interface Science 608 : 2339 – 2346 . 10.1016/j.jcis.2021.10.151 CASPubMedWeb of Science®Google Scholar Selleri , G. , Gino , M.E. , Brugo , T.M. et al. ( 2022 ). Self-sensing composite material based on piezoelectric nanofibers . Materials & Design 219 : 110787 . 10.1016/j.matdes.2022.110787 CASWeb of Science®Google Scholar Lee , J.A. , Aliev , A.E. , Bykova , J. et al. ( 2016 ). Woven-yarn thermoelectric textiles . Advanced Materials 28 : 5038 – 5044 . 10.1002/adma.201600709 CASPubMedWeb of Science®Google Scholar Sun , Z.Y. , Feng , L.L. , Wen , X. et al. ( 2021 ). ACS Applied Materials & Interfaces 47 : 56226 – 56232 . 10.1021/acsami.1c17847 Google Scholar Tabrizizadeh , T. , Wang , J. , Kumar , R. et al. ( 2021 ). Water-evaporation-induced electric generator built from carbonized electrospun polyacrylonitrile nanofiber mats . ACS Applied Materials & Interfaces 43 : 50900 – 50910 . 10.1021/acsami.1c13487 Google Scholar Sun , Z.Y. , Feng , L.L. , Xiong , C.D. et al. ( 2021 ). Electrospun nanofiber fabric: an efficient, breathable and wearable moist-electric generator . Journal of Materials Chemistry A 9 : 7085 – 7093 . 10.1039/D0TA11974A CASWeb of Science®Google Scholar Sun , Z.Y. , Wen , X. , Wang , L.M. et al. ( 2022 ). Emerging design principles, materials, and applications for moisture-enabled electric generation . eScience 2 : 32 – 46 . 10.1016/j.esci.2021.12.009 Google Scholar Zhao , Q.N. , Jiang , Y.D. , Duan , Z.H. et al. ( 2022 ). A Nb 2 CT x /sodium alginate-based composite film with neuron-like network for self-powered humidity sensing . Chemical Engineering Journal 438 : 135588 . 10.1016/j.cej.2022.135588 CASWeb of Science®Google Scholar Sun , Z.Y. , Feng , L.L. , Wen , X. et al. ( 2021 ). Nanofiber fabric based ion-gradient-enhanced moist-electric generator with a sustained voltage output of 1.1 volts . Materials Horizons 8 : 2303 – 2309 . 10.1039/D1MH00565K CASPubMedWeb of Science®Google Scholar Lyu , Q.Q. , Peng , B.L. , Xie , Z.J. et al. ( 2020 ). Moist-induced electricity generation by electrospun cellulose acetate membranes with optimized porous structures . ACS Applied Materials & Interfaces 12 : 57373 – 57381 . 10.1021/acsami.0c17931 CASPubMedWeb of Science®Google Scholar Wang , L.M. , Feng , L.L. , Sun , Z.Y. et al. ( 2022 ). Flexible, self-cleaning, and high-performance ceramic nanofiber-based moist-electric generator enabled by interfacial engineering . Science China Technological Sciences 65 : 450 – 457 . 10.1007/s11431-021-1969-y CASWeb of Science®Google Scholar Olthuis , W. , Schippers , B. , Eijkel , J. , and van den Berg , A. ( 2005 ). Energy from streaming current and potential . Sensors and Actuators B: Chemical 111–112 : 385 – 389 . 10.1016/j.snb.2005.03.039 CASWeb of Science®Google Scholar van der Heyden , F.H.J. , Bonthuis , D.J. , Stein , D. et al. ( 2006 ). Electrokinetic energy conversion efficiency in nanofluidic channels . Nano Letters 6 : 2232 – 2237 . 10.1021/nl061524l CASPubMedWeb of Science®Google Scholar van der Heyden , F.H.J. , Bonthuis , D.J. , Stein , D. et al. ( 2007 ). Power generation by pressure-driven transport of ions in nanofluidic channels . Nano Letters 7 : 1022 – 1025 . 10.1021/nl070194h CASPubMedWeb of Science®Google Scholar Jiang , S.H. , Chen , Y.M. , Duan , G.G. et al. ( 2018 ). Electrospun nanofiber reinforced composites: a review . Polymer Chemistry 9 : 2685 – 2720 . 10.1039/C8PY00378E CASWeb of Science®Google Scholar Hussain , D. , Loyal , F. , Greiner , A. , and Wendorff , J.H. ( 2010 ). Structure property correlations for electrospun nanofiber nonwovens . Polymer 51 : 3989 – 3997 . 10.1016/j.polymer.2010.06.036 CASWeb of Science®Google Scholar Zhang , Z.H. , Li , X.M. , Yin , J. et al. ( 2018 ). Emerging hydrovoltaic technology . Nature Nanotechnology 13 : 1109 – 1119 . 10.1038/s41565-018-0228-6 CASPubMedWeb of Science®Google Scholar Xue , G. , Xu , Y. , Ding , T. et al. ( 2017 ). Water-evaporation-induced electricity with nanostructured carbon materials . Nature Nanotechnology 12 : 317 – 321 . 10.1038/nnano.2016.300 CASPubMedWeb of Science®Google Scholar Zhao , F. , Cheng , H.H. , Zhang , Z.P. et al. ( 2015 ). Direct power generation from a graphene oxide film under moisture . Advanced Materials 27 : 4351 – 4357 . 10.1002/adma.201501867 CASPubMedWeb of Science®Google Scholar Wang , H.Y. , Sun , Y.L. , He , T.C. et al. ( 2021 ). Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1,000 V output . Nature Nanotechnology 16 : 811 – 819 . 10.1038/s41565-021-00903-6 CASPubMedWeb of Science®Google Scholar Liu , X.M. , Gao , H.Y. , Ward , J. et al. ( 2020 ). Power generation from ambient humidity using protein nanowires . Nature 578 : 550 – 554 . 10.1038/s41586-020-2010-9 CASPubMedWeb of Science®Google Scholar Electrospinning: Fundamentals, Methods, and Applications ReferencesRelatedInformation