Electrospun Nanofiber‐Based Water‐Induced Electric Generation

基督教牧师 织物 医学 图书馆学 政治学 地理 考古 计算机科学 法学
作者
Zhaoyang Sun,Liming Wang
出处
期刊:Electrospinning [De Gruyter]
卷期号:: 235-245
标识
DOI:10.1002/9783527841479.ch13
摘要

Chapter 13 Electrospun Nanofiber-Based Water-Induced Electric Generation Zhaoyang Sun, Zhaoyang Sun Donghua University, College of Textiles, Key Laboratory of Textile Science & Technology, Ministry of Education, 2999 Renmin North Road, Songjiang District, Shanghai, 201620 ChinaSearch for more papers by this authorLiming Wang, Liming Wang Donghua University, College of Textiles, Key Laboratory of Textile Science & Technology, Ministry of Education, 2999 Renmin North Road, Songjiang District, Shanghai, 201620 ChinaSearch for more papers by this author Zhaoyang Sun, Zhaoyang Sun Donghua University, College of Textiles, Key Laboratory of Textile Science & Technology, Ministry of Education, 2999 Renmin North Road, Songjiang District, Shanghai, 201620 ChinaSearch for more papers by this authorLiming Wang, Liming Wang Donghua University, College of Textiles, Key Laboratory of Textile Science & Technology, Ministry of Education, 2999 Renmin North Road, Songjiang District, Shanghai, 201620 ChinaSearch for more papers by this author Book Editor(s):Liming Wang, Liming Wang Donghua University, 2999 North Renmin Road, Songjiang District, Shanghai, 200051 ChinaSearch for more papers by this authorXiaohong Qin, Xiaohong Qin Donghua University, 2999 North Renmin Road, Songjiang District, Shanghai, 200051 ChinaSearch for more papers by this author First published: 09 February 2024 https://doi.org/10.1002/9783527841479.ch13 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary Water, one of the most important sources existing on our earth plays vital and essential roles in all aspects from basic physiological reactions in cells, and daily lives to industrial processes. Water-induced electric generation, which converts energy in water to electricity, is a promising technology for next-generation energy conversion. Electrospun nanofibers take advantage of their high-specific area and porous structure and are a good candidate to construct the moist-electric generators. In this chapter, we have discussed this technology in two systems, water-induced electric system and moist-induced electric system, constructed using electrospun nanofibers. Also, each aspect is discussed in four parts including, device setup, materials selection principle, mechanisms, and application. References Tentzeris , M.M. , Georgiadis , A. , and Roselli , L. ( 2014 ). Energy harvesting and scavenging . Proceedings of the IEEE 102 : 1644 – 1648 . 10.1109/JPROC.2014.2361599 Web of Science®Google Scholar Xue , J.J. , Wu , T. , Dai , Y.Q. , and Xia , Y.N. ( 2019 ). Electrospinning and electrospun nanofibers: methods, materials, and applications . Chemical Reviews 119 : 5298 – 5415 . 10.1021/acs.chemrev.8b00593 CASPubMedWeb of Science®Google Scholar Tao , X.J. , Zhou , Y.M. , Qi , K. et al. ( 2022 ). Wearable textile triboelectric generator based on nanofiber core-spun yarn coupled with electret effect . Journal of Colloid and Interface Science 608 : 2339 – 2346 . 10.1016/j.jcis.2021.10.151 CASPubMedWeb of Science®Google Scholar Selleri , G. , Gino , M.E. , Brugo , T.M. et al. ( 2022 ). Self-sensing composite material based on piezoelectric nanofibers . Materials & Design 219 : 110787 . 10.1016/j.matdes.2022.110787 CASWeb of Science®Google Scholar Lee , J.A. , Aliev , A.E. , Bykova , J. et al. ( 2016 ). Woven-yarn thermoelectric textiles . Advanced Materials 28 : 5038 – 5044 . 10.1002/adma.201600709 CASPubMedWeb of Science®Google Scholar Sun , Z.Y. , Feng , L.L. , Wen , X. et al. ( 2021 ). ACS Applied Materials & Interfaces 47 : 56226 – 56232 . 10.1021/acsami.1c17847 Google Scholar Tabrizizadeh , T. , Wang , J. , Kumar , R. et al. ( 2021 ). Water-evaporation-induced electric generator built from carbonized electrospun polyacrylonitrile nanofiber mats . ACS Applied Materials & Interfaces 43 : 50900 – 50910 . 10.1021/acsami.1c13487 Google Scholar Sun , Z.Y. , Feng , L.L. , Xiong , C.D. et al. ( 2021 ). Electrospun nanofiber fabric: an efficient, breathable and wearable moist-electric generator . Journal of Materials Chemistry A 9 : 7085 – 7093 . 10.1039/D0TA11974A CASWeb of Science®Google Scholar Sun , Z.Y. , Wen , X. , Wang , L.M. et al. ( 2022 ). Emerging design principles, materials, and applications for moisture-enabled electric generation . eScience 2 : 32 – 46 . 10.1016/j.esci.2021.12.009 Google Scholar Zhao , Q.N. , Jiang , Y.D. , Duan , Z.H. et al. ( 2022 ). A Nb 2 CT x /sodium alginate-based composite film with neuron-like network for self-powered humidity sensing . Chemical Engineering Journal 438 : 135588 . 10.1016/j.cej.2022.135588 CASWeb of Science®Google Scholar Sun , Z.Y. , Feng , L.L. , Wen , X. et al. ( 2021 ). Nanofiber fabric based ion-gradient-enhanced moist-electric generator with a sustained voltage output of 1.1 volts . Materials Horizons 8 : 2303 – 2309 . 10.1039/D1MH00565K CASPubMedWeb of Science®Google Scholar Lyu , Q.Q. , Peng , B.L. , Xie , Z.J. et al. ( 2020 ). Moist-induced electricity generation by electrospun cellulose acetate membranes with optimized porous structures . ACS Applied Materials & Interfaces 12 : 57373 – 57381 . 10.1021/acsami.0c17931 CASPubMedWeb of Science®Google Scholar Wang , L.M. , Feng , L.L. , Sun , Z.Y. et al. ( 2022 ). Flexible, self-cleaning, and high-performance ceramic nanofiber-based moist-electric generator enabled by interfacial engineering . Science China Technological Sciences 65 : 450 – 457 . 10.1007/s11431-021-1969-y CASWeb of Science®Google Scholar Olthuis , W. , Schippers , B. , Eijkel , J. , and van den Berg , A. ( 2005 ). Energy from streaming current and potential . Sensors and Actuators B: Chemical 111–112 : 385 – 389 . 10.1016/j.snb.2005.03.039 CASWeb of Science®Google Scholar van der Heyden , F.H.J. , Bonthuis , D.J. , Stein , D. et al. ( 2006 ). Electrokinetic energy conversion efficiency in nanofluidic channels . Nano Letters 6 : 2232 – 2237 . 10.1021/nl061524l CASPubMedWeb of Science®Google Scholar van der Heyden , F.H.J. , Bonthuis , D.J. , Stein , D. et al. ( 2007 ). Power generation by pressure-driven transport of ions in nanofluidic channels . Nano Letters 7 : 1022 – 1025 . 10.1021/nl070194h CASPubMedWeb of Science®Google Scholar Jiang , S.H. , Chen , Y.M. , Duan , G.G. et al. ( 2018 ). Electrospun nanofiber reinforced composites: a review . Polymer Chemistry 9 : 2685 – 2720 . 10.1039/C8PY00378E CASWeb of Science®Google Scholar Hussain , D. , Loyal , F. , Greiner , A. , and Wendorff , J.H. ( 2010 ). Structure property correlations for electrospun nanofiber nonwovens . Polymer 51 : 3989 – 3997 . 10.1016/j.polymer.2010.06.036 CASWeb of Science®Google Scholar Zhang , Z.H. , Li , X.M. , Yin , J. et al. ( 2018 ). Emerging hydrovoltaic technology . Nature Nanotechnology 13 : 1109 – 1119 . 10.1038/s41565-018-0228-6 CASPubMedWeb of Science®Google Scholar Xue , G. , Xu , Y. , Ding , T. et al. ( 2017 ). Water-evaporation-induced electricity with nanostructured carbon materials . Nature Nanotechnology 12 : 317 – 321 . 10.1038/nnano.2016.300 CASPubMedWeb of Science®Google Scholar Zhao , F. , Cheng , H.H. , Zhang , Z.P. et al. ( 2015 ). Direct power generation from a graphene oxide film under moisture . Advanced Materials 27 : 4351 – 4357 . 10.1002/adma.201501867 CASPubMedWeb of Science®Google Scholar Wang , H.Y. , Sun , Y.L. , He , T.C. et al. ( 2021 ). Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1,000 V output . Nature Nanotechnology 16 : 811 – 819 . 10.1038/s41565-021-00903-6 CASPubMedWeb of Science®Google Scholar Liu , X.M. , Gao , H.Y. , Ward , J. et al. ( 2020 ). Power generation from ambient humidity using protein nanowires . Nature 578 : 550 – 554 . 10.1038/s41586-020-2010-9 CASPubMedWeb of Science®Google Scholar Electrospinning: Fundamentals, Methods, and Applications ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小白完成签到,获得积分10
刚刚
Akim应助嘟嘟嘟嘟采纳,获得10
2秒前
jjjj发布了新的文献求助10
3秒前
断然发布了新的文献求助10
3秒前
XLC发布了新的文献求助30
5秒前
不加香菜完成签到 ,获得积分10
5秒前
小马甲应助sy采纳,获得10
6秒前
打打应助假面绅士采纳,获得10
11秒前
浅浅殇完成签到,获得积分10
12秒前
诸葛御风应助Magali采纳,获得30
13秒前
完美世界应助激情的含巧采纳,获得10
13秒前
等待的蛟凤关注了科研通微信公众号
14秒前
15秒前
唯博完成签到 ,获得积分10
18秒前
大个应助搞怪书兰采纳,获得10
19秒前
caoxiang完成签到,获得积分10
20秒前
sy发布了新的文献求助10
21秒前
22秒前
wanci应助Jaden采纳,获得10
22秒前
23秒前
Lee发布了新的文献求助30
23秒前
假面绅士发布了新的文献求助10
27秒前
lvying发布了新的文献求助10
27秒前
量子星尘发布了新的文献求助10
27秒前
李健的小迷弟应助XXY采纳,获得10
30秒前
英俊的铭应助科研通管家采纳,获得10
33秒前
fifteen应助科研通管家采纳,获得10
33秒前
李健应助科研通管家采纳,获得10
33秒前
Xiaoxiao应助科研通管家采纳,获得10
33秒前
酷波er应助科研通管家采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
fifteen应助科研通管家采纳,获得10
34秒前
34秒前
34秒前
小蘑菇应助科研通管家采纳,获得10
34秒前
lvying完成签到,获得积分10
36秒前
Lee完成签到,获得积分20
36秒前
等待的蛟凤发布了新的文献求助500
38秒前
41秒前
42秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
Learning to Listen, Listening to Learn 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3871545
求助须知:如何正确求助?哪些是违规求助? 3413519
关于积分的说明 10685440
捐赠科研通 3137965
什么是DOI,文献DOI怎么找? 1731366
邀请新用户注册赠送积分活动 834789
科研通“疑难数据库(出版商)”最低求助积分说明 781351