Development of a novel prognostic signature based on single‐cell combined bulk RNA analysis in breast cancer

乳腺癌 小桶 基因 比例危险模型 生物 生存分析 癌症 接收机工作特性 计算生物学 肿瘤科 基因表达 癌症研究 医学 内科学 遗传学 转录组
作者
Ying Xiao,Ge Hu,Ning Xie,Liang Yin,Yaqiang Pan,Cong Liu,Shihan Lou,Cunzhi Zhu
出处
期刊:Journal of Gene Medicine [Wiley]
卷期号:26 (2)
标识
DOI:10.1002/jgm.3673
摘要

Abstract Background Breast cancer (BC), a malignant tumor, is a significant cause of death and disability among women globally. Recent research indicates that copy number variation plays a crucial role in tumor development. In this study, we employed the Single‐Cell Variational Aneuploidy Analysis (SCEVAN) algorithm to differentiate between malignant and non‐malignant cells, aiming to identify genetic signatures with prognostic relevance for predicting patient survival. Methods We analyzed gene expression profiles and associated clinical data from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Using the SCEVAN algorithm, we distinguished malignant from non‐malignant cells and investigated cellular interactions within the tumor microenvironment (TME). We categorized TCGA samples based on differentially expressed genes (DEGs) between these cell types. Subsequent Kyoto Encyclopedia of Genes and Genomes pathway analysis was conducted. Additionally, we developed polygenic models for the DEGs using least absolute shrinkage and selection operator‐penalized Cox regression analysis. To assess the prognostic accuracy of these characteristics, we generated Kaplan–Meier and receiver operating characteristic curves from training and validation datasets. We also monitored the expression variations of prognostic genes across the pseudotime of malignant cells. Patients were divided into high‐risk and low‐risk groups based on median risk scores to compare their TME and identify potential therapeutic agents. Lastly, polymerase chain reaction was used to validate seven pivotal genes. Results The SCEVAN algorithm identified distinct malignant and non‐malignant cells in GSE180286. Cellchat analysis revealed significantly increased cellular communication, particularly between fibroblasts, endothelial cells and malignant cells. The DEGs were predominantly involved in immune‐related pathways. TCGA samples were classified into clusters A and B based on these genes. Cluster A, enriched in immune pathways, was associated with poorer prognosis, whereas cluster B, predominantly involved in circadian rhythm pathways, showed better outcomes. We constructed a 14‐gene prognostic signature, validated in a 1:1 internal TCGA cohort and external GEO datasets (GSE42568 and GSE146558). Kaplan–Meier analysis confirmed the prognostic signature's accuracy ( p < 0.001). Receiver operating characteristic curve analysis demonstrated the predictive reliability of these prognostic features. Single‐cell pseudotime analysis with monocle2 highlighted the distinct expression trends of these genes in malignant cells, underscoring the intratumoral heterogeneity. Furthermore, we explored the differences in TME between high‐ and low‐risk groups and identified 16 significantly correlated drugs. Conclusion Our findings suggest that the 14‐gene prognostic signature could serve as a novel biomarker for forecasting the prognosis of BC patients. Additionally, the immune cells and pathways in different risk groups indicate that immunotherapy may be a crucial component of treatment strategies for BC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清爽达完成签到 ,获得积分10
3秒前
诸葛丞相发布了新的文献求助10
3秒前
星辰大海应助科研通管家采纳,获得10
5秒前
Zain_init应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得50
5秒前
Akim应助科研通管家采纳,获得30
5秒前
852应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得30
5秒前
MingandMin完成签到,获得积分10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
6秒前
Zain_init应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
vvvvvv应助科研通管家采纳,获得10
6秒前
执念完成签到 ,获得积分10
6秒前
丘比特应助科研通管家采纳,获得20
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
内向士萧发布了新的文献求助10
6秒前
shuo0976应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
6秒前
zh123完成签到,获得积分10
7秒前
查理fofo完成签到,获得积分10
8秒前
8秒前
Wendy完成签到,获得积分10
9秒前
fan完成签到,获得积分10
10秒前
11秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Graphene Quantum Dots (GQDs): Advances in Research and Applications 200
Advanced Introduction to US Civil Liberties 200
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825235
求助须知:如何正确求助?哪些是违规求助? 3367507
关于积分的说明 10446224
捐赠科研通 3086876
什么是DOI,文献DOI怎么找? 1698353
邀请新用户注册赠送积分活动 816713
科研通“疑难数据库(出版商)”最低求助积分说明 769937