MSIE-Net: Associative Entity-Based Multi-Stage Network for Structured Information Extraction from Reports

计算机科学 阶段(地层学) 结合属性 情报检索 数学 生物 古生物学 纯数学
作者
Qiuyue Li,Hao Sheng,Mingxue Sheng,Honglin Wan
出处
期刊:Applied sciences [MDPI AG]
卷期号:14 (4): 1668-1668 被引量:1
标识
DOI:10.3390/app14041668
摘要

Efficient document recognition and sharing remain challenges in the healthcare, insurance, and finance sectors. One solution to this problem has been the use of deep learning techniques to automatically extract structured information from paper documents. Specifically, the structured extraction of a medical examination report (MER) can enhance medical efficiency, data analysis, and scientific research. While current methods focus on reconstructing table bodies, they often overlook table headers, leading to incomplete information extraction. This paper proposes MSIE-Net (multi-stage-structured information extraction network), a novel structured information extraction method, leveraging refined attention transformers and associated entity detection to enhance comprehensive MER information retrieval. MSIE-Net includes three stages. First, the RVI-LayoutXLM (refined visual-feature independent LayoutXLM) targets key information extraction. In this stage, the refined attention accentuates the interaction between different modalities by adjusting the attention score at the current position using previous position information. This design enables the RVI-LayoutXLM to learn more specific contextual information to improve extraction performance. Next, the associated entity detection module, RIFD-Net (relevant intra-layer fine-tuned detection network), identifies each test item’s location within the MER table body. Significantly, the backbone of RIFD-Net incorporates the intra-layer feature adjustment module (IFAM) to extract global features while homing in on local areas, proving especially sensitive for inspection tasks with dense and long bins. Finally, structured post-processing based on coordinate aggregation links the outputs from the prior stages. For the evaluation, we constructed the Chinese medical examination report dataset (CMERD), based on real medical scenarios. MSIE-Net demonstrated competitive performance in tasks involving key information extraction and associated entity detection. Experimental results validate MSIE-Net’s capability to successfully detect key entities in MER and table images with various complex layouts, perform entity relation extraction, and generate structured labels, laying the groundwork for intelligent medical documentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
复读机发布了新的文献求助30
1秒前
1秒前
1秒前
2秒前
2秒前
饼干完成签到,获得积分10
2秒前
3秒前
哈哈完成签到,获得积分20
3秒前
小蘑菇应助结实乐荷采纳,获得10
4秒前
大尾尾发布了新的文献求助10
5秒前
5秒前
5秒前
lixiangrui110完成签到,获得积分10
6秒前
田様应助tjfwg采纳,获得10
6秒前
Ludi完成签到 ,获得积分10
6秒前
LMELME发布了新的文献求助10
7秒前
7秒前
饼干发布了新的文献求助10
7秒前
DreamRunner0410完成签到 ,获得积分10
7秒前
8秒前
Throb发布了新的文献求助30
9秒前
阿兰发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
共享精神应助复读机采纳,获得30
10秒前
11秒前
cola发布了新的文献求助30
11秒前
封印完成签到,获得积分10
11秒前
LLXY完成签到,获得积分10
12秒前
阿鑫发布了新的文献求助10
12秒前
12秒前
14秒前
15秒前
善学以致用应助张欢欢采纳,获得10
17秒前
liu刘发布了新的文献求助10
18秒前
羊羊羊完成签到,获得积分20
18秒前
FXe发布了新的文献求助10
19秒前
月子淇完成签到 ,获得积分10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5542341
求助须知:如何正确求助?哪些是违规求助? 4628524
关于积分的说明 14609085
捐赠科研通 4569716
什么是DOI,文献DOI怎么找? 2505357
邀请新用户注册赠送积分活动 1482749
关于科研通互助平台的介绍 1454162