Modeling the anaerobic digestion of palm oil mill effluent via physics-informed deep learning

厌氧消化 流出物 磨坊 棕榈油 制浆造纸工业 废物管理 环境科学 工程类 化学 机械工程 农林复合经营 甲烷 有机化学
作者
Kar Ming Shaw,Phaik Eong Poh,Yong Kuen Ho,Zhiyuan Chen,Irene Mei Leng Chew
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:485: 149826-149826 被引量:5
标识
DOI:10.1016/j.cej.2024.149826
摘要

The modeling of anaerobic digestion (AD) plays a significant role in process monitoring and prediction. Typically, mechanistic models or machine learning are used to model the AD process, where the former relies on the first-principle knowledge, while the latter learns the trend in data. In this study, models of AD were developed using data obtained from two palm oil mill effluent (POME) AD industrial plants, here they are denoted as plant A and plant B. The mechanistic model ADM1-R4 was first used to simulate POME AD to predict 3 AD outputs – methane, carbon dioxide, and effluent concentration. However, moderate prediction accuracy was observed, this could be due to highly dynamic environments in industrial plants and the incomplete knowledge of the mechanistic model where only 3 input features were considered. Then, artificial neural networks (ANNs) were trained using simulated data from the variational autoencoder for training and making the same predictions on the test data. ANNs were more inclusive as they included 6 or 7 input features and were found to make predictions with higher accuracy. Moreover, different ANN architectures were also investigated. Nevertheless, ANNs were time-consuming to train. Hence, physics-informed neural networks, namely ADM1-R4-NN, were further developed by embedding the information of mechanistic equations into the loss function of ANN. Overall, ADM1-R4-NN outperformed ANN and ADM1-R4, showing higher training efficiency (vs ANN) and testing accuracy (vs ANN and ADM1-R4). For plant A, the best prediction of ADM1-R4-NN resulted in R2 values of 0.87–0.95, while for plant B, the R2 was 0.81–0.88. Finally, feature importance analysis was conducted, where hydraulic retention time and mass loading were found to be the top influencing factors, while pretreatment temperature was a significant factor as well. The developed ADM1-R4-NN is a promising model for POME AD, and this method has the potential to be applied to other wastewater AD processes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
miaomiao完成签到 ,获得积分10
刚刚
魔幻乐安完成签到,获得积分10
1秒前
听风完成签到,获得积分20
1秒前
愫浅完成签到 ,获得积分10
1秒前
学习完成签到 ,获得积分10
1秒前
1秒前
syl驳回了鸣笛应助
1秒前
满眼星辰发布了新的文献求助10
2秒前
CodeCraft应助Genius采纳,获得10
2秒前
John完成签到,获得积分20
3秒前
Akim应助科研混子采纳,获得10
4秒前
lq完成签到 ,获得积分10
4秒前
苗条元霜发布了新的文献求助10
5秒前
6秒前
孟鑫完成签到,获得积分10
6秒前
aldehyde应助听风采纳,获得10
7秒前
snowpie完成签到 ,获得积分10
7秒前
9秒前
夏天不回来完成签到,获得积分10
10秒前
鸣笛应助不敢装睡采纳,获得10
11秒前
养猪人完成签到,获得积分10
11秒前
自由质数完成签到,获得积分10
11秒前
12秒前
12秒前
完美世界应助安若采纳,获得10
13秒前
hll发布了新的文献求助10
15秒前
16秒前
MQ完成签到,获得积分10
17秒前
小琦完成签到,获得积分10
17秒前
Xu完成签到,获得积分10
17秒前
18秒前
鲸鱼姐姐发布了新的文献求助10
18秒前
孤海未蓝完成签到,获得积分10
20秒前
xue完成签到,获得积分10
20秒前
lucky完成签到,获得积分10
20秒前
tunacan完成签到 ,获得积分10
20秒前
蒋时晏应助不敢装睡采纳,获得200
30秒前
31秒前
平凡完成签到,获得积分10
32秒前
雨中漫步完成签到,获得积分10
35秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3900365
求助须知:如何正确求助?哪些是违规求助? 3445087
关于积分的说明 10838235
捐赠科研通 3170234
什么是DOI,文献DOI怎么找? 1751541
邀请新用户注册赠送积分活动 846761
科研通“疑难数据库(出版商)”最低求助积分说明 789374