Two-step ensemble under-sampling algorithm for massive imbalanced data classification

计算机科学 采样(信号处理) 算法 数据挖掘 集成学习 人工智能 模式识别(心理学) 计算机视觉 滤波器(信号处理)
作者
Lin Bai,Tao Ju,Hao Wang,Ming Liu,Xiaoying Pan
出处
期刊:Information Sciences [Elsevier BV]
卷期号:665: 120351-120351 被引量:1
标识
DOI:10.1016/j.ins.2024.120351
摘要

Imbalanced data classification is a challenging problem in the field of machine learning. Class imbalance, class overlap, and large data volume significantly affect classification performance. Focusing on the impact of class overlap on classification effectiveness, we propose a two-step ensemble under-sampling algorithm based on boundary information mining (TSSE-BIM) with the goal of reducing the information loss from under-sampling methods on large-scale imbalanced data. In the first stage, the proposed method applies an improved equalization under-sampling strategy to mine sample contribution information and quickly obtains the distribution information of data relative to the decision boundary. In the second stage, based on the boundary information, a weighted boundary sampling is performed to remove noisy and highly overlapping samples. It is easy to retain samples with high contribution and effectively suppress the information loss caused by under-sampling. Then, the overall framework is designed based on a serial ensemble similar to boosting, where the weights of each base classifier are assigned to achieve a more powerful performance based on the false positive rate and false negative rate on the original data. Finally, extensive experiments indicate that TSSE-BIM outperforms state-of-the-art methods and ranks first on average under four metrics, especially F1 and MCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
wang_dong发布了新的文献求助30
1秒前
李开明发布了新的文献求助10
1秒前
2秒前
MBEye完成签到,获得积分10
2秒前
华仔应助八荒来犬采纳,获得10
2秒前
CLF发布了新的文献求助10
3秒前
韬奋!发布了新的文献求助10
3秒前
tracy发布了新的文献求助10
3秒前
PIKACHU完成签到,获得积分10
4秒前
充电宝应助知道采纳,获得10
4秒前
YiWeiYing发布了新的文献求助10
4秒前
风中书易完成签到,获得积分10
4秒前
收拾完完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
jack完成签到,获得积分10
5秒前
5秒前
Owen应助不吃香菜采纳,获得10
5秒前
6秒前
完美世界应助星辰采纳,获得10
6秒前
jiangqin123发布了新的文献求助10
6秒前
6秒前
修仙中应助淡然念双采纳,获得10
7秒前
7890733发布了新的文献求助10
8秒前
天蓬元帅完成签到,获得积分10
8秒前
doku完成签到,获得积分10
8秒前
JamesPei应助ranj采纳,获得10
8秒前
9秒前
LYY完成签到,获得积分10
9秒前
wcx完成签到,获得积分10
10秒前
任斯发布了新的文献求助30
10秒前
doku发布了新的文献求助10
11秒前
精明松思发布了新的文献求助10
11秒前
helinahs完成签到 ,获得积分10
12秒前
12秒前
lie应助精明人雄采纳,获得10
12秒前
小鬼頭完成签到,获得积分10
12秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 740
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
Corpus Linguistics for Language Learning Research 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4139320
求助须知:如何正确求助?哪些是违规求助? 3676275
关于积分的说明 11620352
捐赠科研通 3370382
什么是DOI,文献DOI怎么找? 1851340
邀请新用户注册赠送积分活动 914489
科研通“疑难数据库(出版商)”最低求助积分说明 829266