Research on breakup length and atomization characteristics of the swirl liquid sheet in perforation disintegration mode

分手 韦伯数 机械 喷嘴 表面张力 物理 雷诺数 穿孔 液体燃料 燃烧 材料科学 热力学 复合材料 化学 有机化学 湍流 冲孔
作者
Yang Liu,Liu Guo,Hui Xu,Long Chen,Suwen Qin,Yaojie Chao,Huiqiang Zhang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (12) 被引量:6
标识
DOI:10.1063/5.0184316
摘要

Pressure swirl nozzles usually operate in aerospace or aviation engines by discharging a swirl liquid sheet. Understanding the disintegration characteristics of the swirl liquid sheet is beneficial to control the combustion instability. In this study, a swirl liquid sheet was injected into the atmosphere. The whole breakup process was numerically simulated by Gerris, an open-source code that anticipates gas–liquid interface using the volume of fluid approach. With the increase in Reynolds number, there were three distinct disintegration modes including rim mode, perforation mode, and wave mode. Then, a perforation disintegration model (PDM) was proposed to predict the droplet size of the perforation disintegration mode. The droplet sizes predicted by PDM are consistent with the numerical results with an average error of 11.09%. A breakup length model (BLM) was also proposed for the swirl liquid sheet using energy conservation. The breakup length results of BLM are in good agreement with the numerical simulation results with an average error of 10.97%. Moreover, with the increase in the liquid surface tension coefficient, the droplet size of the swirl liquid sheet atomization gradually increases. With the increase in liquid density, the droplet size gradually decreases, but the trend of decrease is not obvious.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾经如凡完成签到,获得积分10
刚刚
乐观的白萱关注了科研通微信公众号
1秒前
香蕉觅云应助谭t采纳,获得20
1秒前
2秒前
ToCell发布了新的文献求助10
2秒前
3秒前
4秒前
5秒前
普拉姆完成签到,获得积分10
5秒前
Ankher发布了新的文献求助10
5秒前
6秒前
哈123发布了新的文献求助10
7秒前
7秒前
7秒前
休斯顿发布了新的文献求助10
8秒前
urkk完成签到,获得积分10
9秒前
9秒前
健忘雁风发布了新的文献求助10
9秒前
ly完成签到,获得积分10
10秒前
11秒前
BaoCure发布了新的文献求助10
11秒前
普拉姆发布了新的文献求助20
11秒前
搜集达人应助biubiu26采纳,获得10
11秒前
最佳完成签到 ,获得积分10
11秒前
11秒前
w123发布了新的文献求助30
12秒前
12秒前
13秒前
AmyDong发布了新的文献求助10
16秒前
不知道完成签到,获得积分10
16秒前
jerryzhu发布了新的文献求助10
16秒前
16秒前
ToCell完成签到,获得积分10
16秒前
罗静发布了新的文献求助10
16秒前
w123完成签到,获得积分10
16秒前
ropuuu完成签到,获得积分10
17秒前
18秒前
19秒前
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
肥厚型心肌病新致病基因突变的筛选验证和功能研究 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4566013
求助须知:如何正确求助?哪些是违规求助? 3989435
关于积分的说明 12352925
捐赠科研通 3660902
什么是DOI,文献DOI怎么找? 2017479
邀请新用户注册赠送积分活动 1051886
科研通“疑难数据库(出版商)”最低求助积分说明 939436