亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ANNprob-ACPs: A novel anticancer peptide identifier based on probabilistic feature fusion approach

计算机科学 特征(语言学) 公制(单位) 鉴定(生物学) 标识符 人工智能 概率逻辑 机器学习 数据挖掘 生物 运营管理 语言学 植物 哲学 经济 程序设计语言
作者
Tasmin Karim,Md. Shazzad Hossain Shaon,Md. Fahim Sultan,Md. Zahid Hasan,Abdulla – Al Kafy
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:169: 107915-107915 被引量:13
标识
DOI:10.1016/j.compbiomed.2023.107915
摘要

Anticancer Peptides (ACPs) offer significant potential as cancer treatment drugs in this modern era. Quickly identifying active compounds from protein sequences is crucial for healthcare and cancer treatment. In this paper ANNprob-ACPs, a novel and effective model for detecting ACPs has been implemented based on nine feature encoding techniques, including AAC, CC, W2V, DPC, PAAC, QSO, CTDC, CTDT, and CKSAAGP. After analyzing the performance of several machine learning models, the six best models were selected based on their overall performances in every evaluation metric. The probability scores of each model were subsequently aggregated and used as input of our meta- model, called ANNprob-ACPs. Our model outperformed all others and its potential to lead to phenomenal identification of ACPs. The results of this study showed notable improvement in 10-fold cross-validation and independent test, with accuracy of 93.72% and 90.62%, respectively. Our proposed model, ANNprob-ACPs outperformed existing approaches in terms of accuracy and effectiveness in discovering ACPs. By using SHAP, this study obtained the physicochemical properties of QSO, and compositional properties of DPC, AAC, and PAAC are more impactful for our model's performances, which have a major impact on a drug's interactions and future discoveries. Consequently, this model is crucial for the future and has a high probability of detecting ACPs more frequently. We developed a web server of ANNprob-ACPs, which is accessible at ANNprob-ACPs webserver.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Alan完成签到,获得积分20
6秒前
勤劳初雪完成签到 ,获得积分10
6秒前
8秒前
18秒前
籍新如发布了新的文献求助10
22秒前
在水一方应助科研通管家采纳,获得10
28秒前
搜集达人应助闪闪的书白采纳,获得10
30秒前
31秒前
Wanghongwei发布了新的文献求助30
37秒前
blenx完成签到,获得积分10
59秒前
1分钟前
hhn发布了新的文献求助10
1分钟前
Min发布了新的文献求助10
1分钟前
布同完成签到,获得积分10
2分钟前
Min完成签到,获得积分10
2分钟前
CRUSADER完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
花生糖拌炸酱面完成签到,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
医研完成签到,获得积分10
4分钟前
天天快乐应助lome采纳,获得10
4分钟前
医研给医研的求助进行了留言
4分钟前
4分钟前
lome发布了新的文献求助10
4分钟前
国色不染尘完成签到,获得积分10
4分钟前
小羊咩完成签到 ,获得积分0
4分钟前
skearthy应助桥西采纳,获得30
5分钟前
5分钟前
隐形的雁完成签到,获得积分10
6分钟前
李健的小迷弟应助morena采纳,获得10
7分钟前
无风完成签到 ,获得积分10
7分钟前
无风完成签到 ,获得积分10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
黄玉发布了新的文献求助10
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
A Systemic-Functional Study of Language Choice in Singapore 400
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4869877
求助须知:如何正确求助?哪些是违规求助? 4160705
关于积分的说明 12902034
捐赠科研通 3915658
什么是DOI,文献DOI怎么找? 2150478
邀请新用户注册赠送积分活动 1168832
关于科研通互助平台的介绍 1071845