Perovskite quantum laser with enhanced population inversion driven by plasmon-induced hot electron transfer under potential shift polarization conditions

激光阈值 人口倒转 材料科学 激光器 人口 光电子学 电子转移 超快激光光谱学 等离子体子 激发态 电子 原子物理学 光学 物理 化学 量子力学 人口学 有机化学 社会学
作者
Yong Pan,Lijie Wu,Yuan Zhang,Yihao Zhang,Jie Xu,Haixia Xie,Jianguo Cao
出处
期刊:Photonics Research [Optica Publishing Group]
卷期号:12 (5): 986-986 被引量:1
标识
DOI:10.1364/prj.515120
摘要

The hot electron transfer resulting in fluorescence enhancement is significantly meaningful for theory and experiment of the study on photoelectric devices. However, the laser emission based on direct hot electron transfer is difficult to realize because of the low transfer efficiency. To achieve a laser with a new-generation mechanism based on hot electron transfer, the photoelectric co-excitation is proposed for improving the efficiency of hot electron transfer. The lasing behavior at 532 nm is realized with a threshold of 5 kw cm −2 and 1 μA, which can be considered as the hot electron transfer resulting in population inversion enhancement. Meanwhile, the lasing output power is 0.3 mW. The hot electrons transfer process was described via the transient absorption spectrum according to the improved ground-state bleaching and excited-state absorption signal in device ON. Through comparison with the optical pump only, the quantum efficiencies of hot electron generation (HEG) and hot electron transfer (HET) were increased ∼31 % and 31%, respectively. Most importantly, a triple gain mode coupling device including local surface plasmon, hot electron transfer, and array oscillation was presented. Two modes of population inversion enhancement are proposed. This study can provide theoretical and experimental reference for the research of hot electron lasers and devices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助加缪采纳,获得10
1秒前
2秒前
2秒前
2秒前
envdavid发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
景cc完成签到 ,获得积分10
5秒前
5秒前
等待的小鸽子完成签到 ,获得积分10
5秒前
冰棒比冰冰完成签到 ,获得积分10
5秒前
黎璃发布了新的文献求助10
6秒前
菜菜的黄完成签到,获得积分10
7秒前
胖虎啊完成签到,获得积分10
7秒前
8秒前
窦婧函发布了新的文献求助10
8秒前
李健的小迷弟应助catherine采纳,获得10
9秒前
思垢发布了新的文献求助10
9秒前
lilili应助股份我采纳,获得10
10秒前
11秒前
小二郎应助11采纳,获得10
12秒前
13秒前
从容襄完成签到,获得积分10
13秒前
小小糊呀发布了新的文献求助10
14秒前
NexusExplorer应助GG采纳,获得10
14秒前
15秒前
SciGPT应助永远喜欢一点点采纳,获得10
15秒前
完美世界应助大方凝雁采纳,获得10
16秒前
去看海嘛发布了新的文献求助10
17秒前
LIN完成签到 ,获得积分10
17秒前
17秒前
18秒前
19秒前
22秒前
23秒前
cyanpomelo应助everglow采纳,获得20
23秒前
哈哈哈完成签到,获得积分10
27秒前
笑点低乐巧完成签到,获得积分10
27秒前
FashionBoy应助小小糊呀采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5159157
求助须知:如何正确求助?哪些是违规求助? 4353699
关于积分的说明 13556582
捐赠科研通 4197328
什么是DOI,文献DOI怎么找? 2302011
邀请新用户注册赠送积分活动 1302035
关于科研通互助平台的介绍 1247140