Machine learning for hospital readmission prediction in pediatric population

随机森林 决策树 布里氏评分 逻辑回归 机器学习 接收机工作特性 尤登J统计 人工智能 医学 梯度升压 计算机科学 超参数优化 统计 支持向量机 数学
作者
Nayara Cristina da Silva,Marcelo Keese Albertini,André Ricardo Backes,Geórgia das Graças Pena
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:244: 107980-107980 被引量:12
标识
DOI:10.1016/j.cmpb.2023.107980
摘要

Pediatric readmissions are a burden on patients, families, and the healthcare system. In order to identify patients at higher readmission risk, more accurate techniques, as machine learning (ML), could be a good strategy to expand the knowledge in this area. The aim of this study was to develop predictive models capable of identifying children and adolescents at high risk of potentially avoidable 30-day readmission using ML.Retrospective cohort study was carried out with 9,080 patients under 18 years old admitted to a tertiary university hospital. Demographic, clinical, and biochemical data were collected from electronic databases. We randomly divided the dataset into training (75 %) and testing (25 %), applied downsampling, repeated cross-validation with five folds and ten repetitions, and the hyperparameter was optimized of each technique using a grid search via racing with ANOVA models. We applied six ML classification algorithms to build the predictive models, including classification and regression tree (CART), random forest (RF), gradient boosting machine (GBM), extreme gradient boosting (XGBoost), decision tree and logistic regression (LR). The area under the receiver operating curve (AUC), sensitivity, specificity, Youden's J-index and accuracy were used to evaluate the performance of each model.The avoidable 30-day hospital readmissions rate was 9.5 %. Some algorithms presented similar AUC, both in the dataset training and in the dataset testing, such as XGBoost, RF, GBM and CART. Considering the Youden's J-index, the algorithm that presented the best index was XGBoost with bagging imputation, with AUC of 0.814 (J-index of 0.484). Cancer diagnosis, age, red blood cells, leukocytes, red cell distribution width and sodium levels, elective admission, and multimorbidity were the most important characteristics to classify between readmission and non-readmission groups.Machine learning approaches, especially XGBoost, can predict potentially avoidable 30-day pediatric hospital readmission into tertiary assistance. If implemented in the computer hospital system, our model can help in the early and more accurate identification of patients at readmission risk, targeting health strategic interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LexMz完成签到,获得积分10
刚刚
欢喜依霜完成签到 ,获得积分10
刚刚
LYJ发布了新的文献求助10
2秒前
宗友绿发布了新的文献求助10
2秒前
无花果应助幸福的向彤采纳,获得10
3秒前
小猪完成签到,获得积分10
4秒前
WY完成签到,获得积分20
4秒前
栗子发布了新的文献求助50
5秒前
7秒前
11秒前
尤静柏发布了新的文献求助10
11秒前
11秒前
潘潘发布了新的文献求助10
12秒前
12秒前
13秒前
小狮子完成签到,获得积分10
13秒前
葛栋栋完成签到,获得积分10
13秒前
可可完成签到 ,获得积分10
13秒前
coolkid应助CHENXIN532采纳,获得10
14秒前
14秒前
典雅碧空应助YXS采纳,获得10
15秒前
guantlv发布了新的文献求助10
16秒前
16秒前
葛栋栋发布了新的文献求助10
18秒前
18秒前
FashionBoy应助博修采纳,获得10
18秒前
18秒前
脑洞疼应助白辉采纳,获得10
18秒前
916应助甜美的秋尽采纳,获得10
19秒前
19秒前
梅惜梦发布了新的文献求助30
21秒前
qqqqqqqqqqq发布了新的文献求助10
21秒前
月下荷花发布了新的文献求助10
22秒前
23秒前
23秒前
25秒前
franklin发布了新的文献求助10
26秒前
跳脚的虾完成签到 ,获得积分10
26秒前
28秒前
29秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
振动分析基础 -- (美)L_米罗维奇著;上海交通大学理论力学教研室译 1000
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
American Historical Review - Volume 130, Issue 2, June 2025 (Full Issue) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 3913465
求助须知:如何正确求助?哪些是违规求助? 3458576
关于积分的说明 10902065
捐赠科研通 3185251
什么是DOI,文献DOI怎么找? 1760649
邀请新用户注册赠送积分活动 851760
科研通“疑难数据库(出版商)”最低求助积分说明 792884