A materials informatics framework based on reduced‐order models for extracting structure–property linkages of additively manufactured continuous fiber‐reinforced polymer composites

材料科学 复合材料 财产(哲学) 纤维 聚合物 认识论 哲学
作者
Yawen Zhang,Shanshan Shi,Yunzhuo Lu,Ruixian Qin,Xu Zhang,Jianxin Xu,Bingzhi Chen
出处
期刊:Polymer Composites [Wiley]
卷期号:45 (8): 6914-6932 被引量:1
标识
DOI:10.1002/pc.28238
摘要

Abstract The innovative combination of additive manufacturing (AM) and continuous fiber‐reinforced polymer composites (CFRPCs) confers products with the dual advantages of integrated manufacturing and designability of properties, but lack an efficient and reliable method for property prediction. This study presents a materials informatics framework using reduced‐order models and machine learning (ML) to extract the structure–property (SP) linkages between microstructures and macroscopic elastic properties of AM‐CFRPCs. The initial step involves generating microstructural 2D cross‐sections and representative volume elements (RVEs) with random fiber and pore distributions based on the minimum potential method. Then, finite element (FE) calculations are performed on RVEs to obtain nine macroscopic elastic properties. Following that, the quantification and dimensionality reduction of the 2D cross‐sectional dataset are conducted separately using two‐point spatial correlations and principal component analysis (PCA). Finally, a Bayesian optimized composite kernel support vector regression (CK‐SVR) algorithm is used to effectively establish complex mapping relationships between the reduced‐order representations of the microstructures and the mechanical properties. Despite the reduced‐order dataset containing only 3–6 variables, the framework generates an interpretable model exhibiting excellent accuracy with all predicted R 2 values surpassing 0.91. Therefore, this framework presents a prospective solution for expediting the design and optimization of AM‐CFRPCs. Highlights A materials informatics scheme is proposed to predict the 9 elastic properties of AM‐CFRPCs. Microstructures are quantified and dimensionally reduced by two‐point statistics and PCA. SP linkages are established between 2D cross‐sections and 3D macromechanical properties. Modified CK‐SVR exhibits higher prediction accuracy compared to conventional models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
明理的灭绝完成签到,获得积分10
1秒前
孤岛发布了新的文献求助10
2秒前
青藤发布了新的文献求助10
2秒前
3秒前
3秒前
pan完成签到,获得积分10
3秒前
共享精神应助一二采纳,获得10
4秒前
123jopop完成签到,获得积分10
4秒前
aaawen完成签到,获得积分20
4秒前
misalia发布了新的文献求助10
4秒前
4秒前
曾永佳发布了新的文献求助10
4秒前
树叶有专攻完成签到,获得积分10
5秒前
852应助情绪总在阴雨天采纳,获得10
5秒前
英姑应助chrisio采纳,获得30
5秒前
神奇宝贝完成签到,获得积分10
6秒前
恒星七纪发布了新的文献求助10
6秒前
冷静发布了新的文献求助10
7秒前
会游泳的鱼完成签到,获得积分10
7秒前
8秒前
天真友易完成签到,获得积分20
8秒前
科研八戒发布了新的文献求助10
8秒前
WQ发布了新的文献求助20
9秒前
爆米花应助哈哈采纳,获得10
9秒前
沈呆呆发布了新的文献求助100
9秒前
小王完成签到,获得积分10
9秒前
9秒前
梅七应助老实曼香采纳,获得10
10秒前
10秒前
天天快乐应助开心的雁芙采纳,获得10
10秒前
lxlcx应助危机的纸飞机采纳,获得20
11秒前
爆米花应助Sunshine采纳,获得10
11秒前
恒星七纪完成签到,获得积分10
11秒前
果子应助chemier027采纳,获得10
11秒前
nenoaowu发布了新的文献求助30
11秒前
Ankher发布了新的文献求助300
12秒前
12秒前
12秒前
你不知道完成签到 ,获得积分10
12秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Knowledge management in the fashion industry 300
The world according to Garb 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816509
求助须知:如何正确求助?哪些是违规求助? 3359946
关于积分的说明 10406042
捐赠科研通 3078020
什么是DOI,文献DOI怎么找? 1690472
邀请新用户注册赠送积分活动 813786
科研通“疑难数据库(出版商)”最低求助积分说明 767857