A novel intelligent system based on machine learning for hydrochar multi-target prediction from the hydrothermal carbonization of biomass

水热碳化 生物量(生态学) 碳化 工艺工程 燃烧热 作文(语言) 产量(工程) 制浆造纸工业 化学 环境科学 生物系统 材料科学 工程类 燃烧 生物 有机化学 农学 吸附 冶金 哲学 语言学
作者
Weijin Zhang,Junhui Zhou,Qian Liu,Zhengyong Xu,Haoyi Peng,Lijian Leng,Hailong Li
出处
期刊:Biochar [Springer Nature]
卷期号:6 (1) 被引量:15
标识
DOI:10.1007/s42773-024-00303-8
摘要

Abstract Hydrothermal carbonization (HTC) is a thermochemical conversion technology to produce hydrochar from wet biomass without drying, but it is time-consuming and expensive to experimentally determine the optimal HTC operational conditions of specific biomass to produce desired hydrochar. Therefore, a machine learning (ML) approach was used to predict and optimize hydrochar properties. Specifically, biochemical components (proteins, lipids, and carbohydrates) of biomass were predicted and analyzed first via elementary composition. Then, accurate single-biomass (no mixture) based ML multi-target models (average R 2 = 0.93 and RMSE = 2.36) were built to predict and optimize the hydrochar properties (yield, elemental composition, elemental atomic ratio, and higher heating value). Biomass composition (elemental and biochemical), proximate analyses, and HTC conditions were inputs herein. Interpretation of the model results showed that ash, temperature, and the N and C content of biomass were the most critical factors affecting the hydrochar properties, and that the relative importance of biochemical composition (25%) for the hydrochar was higher than that of operating conditions (19%). Finally, an intelligent system was constructed based on a multi-target model, verified by applying it to predict the atomic ratios (N/C, O/C, and H/C). It could also be extended to optimize hydrochar production from the HTC of single-biomass samples with experimental validation and to predict hydrochar from the co-HTC of mixed biomass samples reported in the literature. This study advances the field by integrating predictive modeling, intelligent systems, and mechanistic insights, offering a holistic approach to the precise control and optimization of hydrochar production through HTC. Graphical Abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灵魂发布了新的文献求助80
刚刚
刚刚
WD发布了新的文献求助10
1秒前
结实星星发布了新的文献求助10
3秒前
大模型应助读书的时候采纳,获得10
5秒前
5秒前
所所应助阔达犀牛采纳,获得10
5秒前
思源应助657采纳,获得10
6秒前
6秒前
6秒前
6秒前
行走在科研的小路上完成签到,获得积分10
7秒前
小蘑菇应助lnk采纳,获得10
8秒前
8秒前
8秒前
9秒前
kk99123应助源主儿采纳,获得10
9秒前
小小发布了新的文献求助10
9秒前
9秒前
xr完成签到,获得积分10
10秒前
10秒前
10秒前
不想读书发布了新的文献求助20
11秒前
YH完成签到,获得积分10
12秒前
13秒前
14秒前
14秒前
Jaylene完成签到 ,获得积分10
14秒前
结实星星完成签到,获得积分0
14秒前
14秒前
打卡下班应助高山我梦采纳,获得20
16秒前
16秒前
赘婿应助呆萌幼晴采纳,获得10
16秒前
16秒前
卡皮巴拉发布了新的文献求助10
20秒前
21秒前
野性的雪萍完成签到,获得积分10
21秒前
徐小发布了新的文献求助30
22秒前
23秒前
24秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Advances in Chemical Mechanical Planarization (CMP) 500
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4084529
求助须知:如何正确求助?哪些是违规求助? 3623734
关于积分的说明 11495137
捐赠科研通 3337990
什么是DOI,文献DOI怎么找? 1835144
邀请新用户注册赠送积分活动 903711
科研通“疑难数据库(出版商)”最低求助积分说明 821867