Study of an Automatic Picking Method for Multimode Dispersion Curves of Surface Waves Based on an Improved U-Net

色散(光学) 人工神经网络 计算机科学 人工智能 多模光纤 算法 光学 物理 电信 光纤
作者
Rui-Tao Dai,Guangzhou Shao,Xingye Liu,Zhiming Ren,Xiang-Tian Heng,Xiaodan Ren
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:3
标识
DOI:10.1109/tgrs.2022.3224919
摘要

Surface wave exploration has been increasingly used in near-surface geophysical investigations. However, the accuracy and efficiency of picking dispersion curves are key to surface wave inversion. Traditional dispersion curve extraction requires manual picking, and the extraction accuracy and efficiency depend on the experience and knowledge of the interpreters. Therefore, developing a fast, high-precision and intelligent dispersion curve extraction method is urgent. This paper improves the structure and output of the U-Net neural network and regards the picking process of dispersion curves as an image classification problem, which quickly and accurately extracts dispersion curves from dispersion energy images. After combining the dispersion energy images of synthetic seismic data with the manually extracted dispersion curve and the theoretical dispersion curve obtained by the Schwab-Knopoff algorithm, the ICM (energy image and dispersion curve extracted manually) training set and the ICS (energy image and dispersion curve calculated by Schwab-Knopoff algorithm) training set are created. The synthetic data tests verify the feasibility of the improved U-Net neural network for automatically picking multimode dispersion curves. The dispersion curve picking results corresponding to two different training sets reveal that the U-Net network model obtained from the ICS training sets exhibits better extraction accuracy. Additionally, we analyze the influence of the sample number of the training set on the dispersion curve picking effect of the improved U-Net and conclude that the improved U-Net network has the advantages of a low training set size requirement and a high dispersion curve extraction accuracy. Finally, the trained network extracts the dispersion curves of two groups of measured surface wave data and obtains plausible extraction results, further proving the proposed method's effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小军发布了新的文献求助10
1秒前
XM完成签到 ,获得积分10
2秒前
2秒前
枫威发布了新的文献求助80
2秒前
3秒前
kqkqkqkqkq完成签到 ,获得积分20
3秒前
paul完成签到,获得积分10
4秒前
暴躁的夏烟完成签到,获得积分10
5秒前
慕青应助可可爱爱采纳,获得10
5秒前
金籽完成签到,获得积分10
6秒前
wy.he举报英吉利25求助涉嫌违规
6秒前
9秒前
linlin发布了新的文献求助10
10秒前
小军完成签到,获得积分10
10秒前
10秒前
小陈完成签到,获得积分10
13秒前
16秒前
NexusExplorer应助文献蚂蚁采纳,获得10
16秒前
量子星尘发布了新的文献求助10
17秒前
仁爱的伯云完成签到,获得积分10
20秒前
bkagyin应助Green采纳,获得10
20秒前
111000发布了新的文献求助10
21秒前
Devoted完成签到,获得积分10
22秒前
22秒前
852应助快乐花卷采纳,获得10
23秒前
所所应助ller采纳,获得10
24秒前
毛毛毛毛小毛完成签到,获得积分10
24秒前
明芷蝶发布了新的文献求助20
24秒前
24秒前
24秒前
26秒前
Humble发布了新的文献求助10
27秒前
altair发布了新的文献求助10
27秒前
29秒前
29秒前
29秒前
lixm发布了新的文献求助10
31秒前
今后应助怕黑的翠绿采纳,获得10
31秒前
充电宝应助Apple采纳,获得10
32秒前
灵巧汉堡完成签到 ,获得积分10
32秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Astrochemistry 1000
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3874525
求助须知:如何正确求助?哪些是违规求助? 3416854
关于积分的说明 10700816
捐赠科研通 3141136
什么是DOI,文献DOI怎么找? 1733147
邀请新用户注册赠送积分活动 835803
科研通“疑难数据库(出版商)”最低求助积分说明 782268