均方误差
高斯分布
太赫兹辐射
期望最大化算法
无线
计算机科学
衰退
均方根
算法
混合模型
数学
频道(广播)
统计
统计物理学
物理
最大似然
工程类
光学
电信
电气工程
量子力学
作者
Evangelos N. Papasotiriou,Alexandros‐Apostolos A. Boulogeorgos,Mar Francis De Guzman,Katsuyuki Haneda,Angeliki Alexiou
标识
DOI:10.1109/pimrc54779.2022.9977784
摘要
This contribution aims at experimentally validating the suitability of Gaussian mixture (GM) distributions to capture the stochastic characteristics of outdoor terahertz (THz) wireless channels. In this direction, we employ a machine learning enabled approach, based on the expectation maximization algorithm, in order to identify the suitable number of Gaussian distributions as well as their corresponding parameters that result to an acceptable fit. The fitting accuracy of the GMs to the empirical distributions is evaluated by means of the Kolmogorov-Smirnov (KS), Kullback-Leibler (KL), root-mean-square-error (RMSE) and R 2 fitting accuracy tests. These tests verify the suitability of GMs to model the small-scale fading channel amplitude of outdoor THz wireless links. In addition, the fitting accuracy results indicate that as the number of mixtures increases the resulting GMs achieve a better fit to the empirical data.
科研通智能强力驱动
Strongly Powered by AbleSci AI