学习分析
出勤
分析
计算机科学
自主学习
干预(咨询)
班级(哲学)
学习管理
教育技术
主动学习(机器学习)
体验式学习
知识管理
数据科学
数学教育
心理学
多媒体
人工智能
精神科
经济
经济增长
作者
Muhammad Izzat Izzuddin bin Zainuddin,Hairulliza Mohamad Judi
标识
DOI:10.18178/ijiet.2022.12.11.1745
摘要
Academic monitoring is implemented at higher learning institutions to allow students and instructors to communicate academically, especially learning progress. However, the system cannot monitor student performance on an ongoing basis, such as class attendance, continuous assessment records and assignment submissions. Personalised learning analytics use student-generated data and analytical models to gather learning patterns so that instructors may advise on students’ learning. Although various studies provide insight into the analytical framework of learning, attention to self-regulated meaningful learning is still insufficient. This study aims to propose a personalised learning analytics system designed by a student that unifies the self-regulated learning components: plan, monitor, and evaluate the learning commitment, and activates alert of student’s achievement for close monitoring and further intervention by the instructor. For this reason, the procedure for analysing the learning pattern for experiment subjects such as Internet of Things, Data Analysis and System Management. Personalised learning analytics has been designed to deliver an interactive learning analytics environment that stimulates students to focus on the achievement of problem-solving skills and enhance the instructor’s decision to support students’ concern.
科研通智能强力驱动
Strongly Powered by AbleSci AI