生物
使负有责任或义务
布奇内拉
寄主(生物学)
共生
细胞生物学
基因
沃尔巴克氏菌
遗传学
昆虫
生态学
细菌
作者
Dandan Wang,Hong He,Cong Wei
标识
DOI:10.1111/1462-2920.16310
摘要
Vertical transmission of symbionts in insects is critical to persistence of symbioses across host generations. The key time point and related cellular/molecular mechanisms underlying the transmission in most insects remain unclear. Here, we reveal that in the bacteriome-endosymbiont system of the cicada Meimuna mongolica, the obligate symbiont Candidatus Sulcia muelleri (hereafter Sulcia) proliferates and migrates to the ovaries mainly after the adult emergence of cicadas. Sulcia cells swell to approximately twice their previous size with the outer membrane changed to be more irregular during this process. Almost all the Sulcia genes involved in biosynthesis of essential amino acids, heat shock protein, energy metabolism, DNA replication and repair and protein export were highly expressed in all life stages of cicadas. Among which, genes involved in DNA replication and synthesis of leucine and arginine were upregulated in the newly emerged adults relative to fifth-instar nymphs. Signal transduction is the pronounced function exhibited in both Sulcia and the cicada bacteriomes in newly emerged adults. The results suggest host sensing of arginine and leucine integrate Sulcia's output of host-EAAs into mTORC1 signalling. This study highlights the importance of signalling pathways in regulating the host/symbiont interaction and symbiont transmission in sap-feeding auchenorrhynchous insects.
科研通智能强力驱动
Strongly Powered by AbleSci AI