已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A migration method for service function chain based on failure prediction

计算机科学 服务器 粒子群优化 分布式计算 计算机网络 模拟退火 虚拟网络 应用服务器 机器学习
作者
Dong Zhai,Xiangru Meng,Zhenhua Yu,Hang Hu,Yuan Liang
出处
期刊:Computer Networks [Elsevier BV]
卷期号:222: 109554-109554 被引量:4
标识
DOI:10.1016/j.comnet.2022.109554
摘要

With the deep application of network technologies in different industries, the demand for network services is becoming more and more diversified. Network operation and maintenance are facing severe challenges, which can be solved by network function virtualization (NFV). NFV technology provides services for users through deploying service function chain (SFC) on servers and substrate links. However, once a server fails, the services it hosts will be affected or even interrupted. Therefore, it is very important to predict failures and migrate SFCs in advance according to predicted results. In this paper, we propose a failure prediction method based on the improved long short-term memory neural network (PMILSTM), which employs LSTM to predict failures. To further improve prediction accuracy, the simulated annealing particle swarm optimization algorithm is adopted to optimize the number of neurons in each long short-term memory layer and the time window length. A server may host multiple SFCs. When a server fails, in order to reduce the impact on users, it is necessary to simultaneously migrate all the SFCs hosted by the server. We propose an improved sparrow search algorithm (ISSA) and a service function chain migration method based on the ISSA (MMISSA). The ISSA introduces tent chaos, opposition-based learning, dynamic weight factor, and mutation operation into SSA to achieve the better global optimization ability. The MMISSA method adopts the ISSA to migrate SFCs so that it can simultaneously search for migration servers for all the virtual network functions deployed on a soon-to-fail server. The better global optimization ability of the ISSA enables better migration results. Therefore, the migration success ratio is improved. Moreover, the fitness function simultaneously considers the average migration cost and migration time. As a result, the MMISSA method effectively reduces the migration cost and migration time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助兼听则明采纳,获得50
刚刚
1秒前
酷波er应助fl采纳,获得10
1秒前
WDS完成签到,获得积分10
3秒前
7秒前
希希完成签到 ,获得积分10
7秒前
denghuo发布了新的文献求助10
8秒前
10秒前
11秒前
搜集达人应助虚幻的安柏采纳,获得10
12秒前
13秒前
fl发布了新的文献求助10
15秒前
JamesPei应助威士忌www采纳,获得10
15秒前
如意蚂蚁发布了新的文献求助10
16秒前
打打应助科研的延续性采纳,获得10
20秒前
悦悦完成签到 ,获得积分10
20秒前
爆米花应助俊逸鹏笑采纳,获得10
21秒前
31秒前
34秒前
NexusExplorer应助Vintage采纳,获得10
36秒前
fafafa关注了科研通微信公众号
39秒前
华小夫完成签到,获得积分10
41秒前
tttt完成签到,获得积分10
43秒前
田様应助华小夫采纳,获得10
45秒前
科研的延续性完成签到,获得积分10
48秒前
邓佳鑫Alan应助wahaha采纳,获得10
49秒前
ASH完成签到 ,获得积分10
50秒前
52秒前
Asteria发布了新的文献求助100
54秒前
56秒前
善学以致用应助denghuo采纳,获得10
56秒前
汉堡包应助Mason采纳,获得10
58秒前
SciGPT应助冷静凌旋采纳,获得10
58秒前
58秒前
迦鳞发布了新的文献求助10
58秒前
59秒前
腼腆的梦蕊完成签到 ,获得积分10
1分钟前
邹钰发布了新的文献求助10
1分钟前
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Technologies supporting mass customization of apparel: A pilot project 300
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780696
求助须知:如何正确求助?哪些是违规求助? 3326187
关于积分的说明 10226179
捐赠科研通 3041293
什么是DOI,文献DOI怎么找? 1669330
邀请新用户注册赠送积分活动 799040
科研通“疑难数据库(出版商)”最低求助积分说明 758701