纳米团簇
标杆管理
原子间势
从头算
纳米颗粒
工作流程
材料科学
分子动力学
从头算量子化学方法
计算机科学
纳米技术
化学物理
计算化学
化学
分子
数据库
有机化学
营销
业务
作者
Marco Fronzi,Roger D. Amos,Rika Kobayashi,Naoki Matsumura,K. Watanabe,Rafael K. Morizawa
出处
期刊:Nanomaterials
[MDPI AG]
日期:2022-11-03
卷期号:12 (21): 3891-3891
被引量:19
摘要
We have investigated Machine Learning Interatomic Potentials in application to the properties of gold nanoparticles through the DeePMD package, using data generated with the ab-initio VASP program. Benchmarking was carried out on Au20 nanoclusters against ab-initio molecular dynamics simulations and show we can achieve similar accuracy with the machine learned potential at far reduced cost using LAMMPS. We have been able to reproduce structures and heat capacities of several isomeric forms. Comparison of our workflow with similar ML-IP studies is discussed and has identified areas for future improvement.
科研通智能强力驱动
Strongly Powered by AbleSci AI