Epigenetic regulation of aging: implications for interventions of aging and diseases

表观遗传学 重编程 成功老龄化 DNA甲基化 染色质重塑 生物 染色质 组蛋白 生物信息学 医学 神经科学 遗传学 老年学 DNA 基因 基因表达 细胞
作者
Wang Kang,Huicong Liu,Qinchao Hu,Lingna Wang,Jiaqing Liu,Zikai Zheng,Weiqi Zhang,Jie Ren,Fangfang Zhu,Guang‐Hui Liu
出处
期刊:Signal Transduction and Targeted Therapy [Springer Nature]
卷期号:7 (1) 被引量:431
标识
DOI:10.1038/s41392-022-01211-8
摘要

Abstract Aging is accompanied by the decline of organismal functions and a series of prominent hallmarks, including genetic and epigenetic alterations. These aging-associated epigenetic changes include DNA methylation, histone modification, chromatin remodeling, non-coding RNA (ncRNA) regulation, and RNA modification, all of which participate in the regulation of the aging process, and hence contribute to aging-related diseases. Therefore, understanding the epigenetic mechanisms in aging will provide new avenues to develop strategies to delay aging. Indeed, aging interventions based on manipulating epigenetic mechanisms have led to the alleviation of aging or the extension of the lifespan in animal models. Small molecule-based therapies and reprogramming strategies that enable epigenetic rejuvenation have been developed for ameliorating or reversing aging-related conditions. In addition, adopting health-promoting activities, such as caloric restriction, exercise, and calibrating circadian rhythm, has been demonstrated to delay aging. Furthermore, various clinical trials for aging intervention are ongoing, providing more evidence of the safety and efficacy of these therapies. Here, we review recent work on the epigenetic regulation of aging and outline the advances in intervention strategies for aging and age-associated diseases. A better understanding of the critical roles of epigenetics in the aging process will lead to more clinical advances in the prevention of human aging and therapy of aging-related diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
斯文败类应助顶级科学家采纳,获得30
刚刚
刚刚
量子星尘发布了新的文献求助10
刚刚
liyichen完成签到,获得积分10
刚刚
老实天菱发布了新的文献求助10
1秒前
田様应助gqz采纳,获得10
1秒前
深情安青应助qq采纳,获得10
2秒前
gege完成签到 ,获得积分10
3秒前
3秒前
Jasper应助yyy采纳,获得10
4秒前
缓慢强炫发布了新的文献求助10
4秒前
6秒前
Hua发布了新的文献求助10
6秒前
Azure完成签到 ,获得积分10
6秒前
单纯如柏完成签到,获得积分10
7秒前
8秒前
Underoos发布了新的文献求助10
8秒前
9秒前
老实天菱完成签到,获得积分10
9秒前
kakamua完成签到 ,获得积分10
9秒前
Akim应助帕累托有效采纳,获得10
11秒前
12秒前
12秒前
月上柳梢头完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
初见完成签到,获得积分10
14秒前
qq发布了新的文献求助10
14秒前
科研狗发布了新的文献求助10
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
情怀应助科研通管家采纳,获得10
15秒前
英姑应助科研通管家采纳,获得10
15秒前
Owen应助科研通管家采纳,获得10
15秒前
慕青应助科研通管家采纳,获得10
15秒前
隐形曼青应助科研通管家采纳,获得10
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
Ava应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421901
求助须知:如何正确求助?哪些是违规求助? 4536896
关于积分的说明 14155394
捐赠科研通 4453475
什么是DOI,文献DOI怎么找? 2442890
邀请新用户注册赠送积分活动 1434308
关于科研通互助平台的介绍 1411402