An open-set classifier-guided dynamic joint domain adaptation for fault diagnosis of rolling bearings

域适应 分类器(UML) 计算机科学 接头(建筑物) 人工智能 模式识别(心理学) 数据挖掘 机器学习 工程类 结构工程
作者
Qi Chang,Congcong Fang,Wei Zhou,Xianghui Meng
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
标识
DOI:10.1177/14759217251343339
摘要

Domain adaptation (DA) techniques have shown effectiveness in cross-domain fault diagnosis; however, their performance is constrained by the closed-set assumption, which is often unrealistic in complex industrial environments. The inherent uncertainty and complexity of mechanical systems in industrial big data often lead to the emergence of novel and unknown fault types. To address this challenge, a practical open-set DA approach was proposed, named open-set classifier-guided dynamic joint domain adaptation (OC-DJDA). Built upon the domain adversarial neural network, OC-DJDA incorporates two key strategies, as suggested by its name. An open-set classifier (OC) is introduced to detect unknown samples and delineate clear boundaries between known and unknown classes without requiring predefined thresholds. Meanwhile, target domain-specific features are isolated to form a shared domain, thereby mitigating the influence of unknown categories during feature alignment. A dynamic joint distribution strategy is employed to adaptively align both marginal and conditional feature distributions across domains through a dynamic weighting mechanism. Experimental results demonstrate the robustness of OC-DJDA and highlight its potential as a reliable solution for open-set fault diagnosis in complex industrial scenarios. Notably, OC-DJDA surpasses several state-of-the-art methods, achieving classification accuracies of 94.79% and 91.70% in open transfer tasks within the same machine and across different machines, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助麻雀采纳,获得10
1秒前
小星发布了新的文献求助10
2秒前
相爱就永远在一起完成签到,获得积分10
2秒前
大模型应助春景当思采纳,获得10
2秒前
mistletoe发布了新的文献求助10
3秒前
4秒前
xiao发布了新的文献求助10
4秒前
少艾发布了新的文献求助10
4秒前
漫漫发布了新的文献求助10
5秒前
英俊的铭应助小精灵采纳,获得10
6秒前
orixero应助SARON采纳,获得10
7秒前
糊涂的傲旋完成签到,获得积分10
7秒前
9秒前
11发布了新的文献求助10
10秒前
骄傲的叶凡完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
11秒前
orixero应助小星采纳,获得10
11秒前
13秒前
13秒前
拼搏大楚关注了科研通微信公众号
13秒前
a15670270171发布了新的文献求助10
13秒前
王宇航发布了新的文献求助10
14秒前
14秒前
15秒前
无所吊谓发布了新的文献求助10
15秒前
15秒前
zoro完成签到,获得积分10
16秒前
original完成签到,获得积分20
16秒前
麻雀发布了新的文献求助10
16秒前
QQ不需要昵称完成签到,获得积分10
17秒前
liying发布了新的文献求助80
17秒前
li发布了新的文献求助10
19秒前
陈嘉嘉完成签到,获得积分10
19秒前
wanci应助漫漫采纳,获得10
19秒前
19秒前
牛超发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5263289
求助须知:如何正确求助?哪些是违规求助? 4423914
关于积分的说明 13771219
捐赠科研通 4298936
什么是DOI,文献DOI怎么找? 2358826
邀请新用户注册赠送积分活动 1355088
关于科研通互助平台的介绍 1316312