Vision Mamba: A Comprehensive Survey and Taxonomy

分类学(生物学) 动物 生物
作者
Xiao Liu,Chenxu Zhang,Fuxiang Huang,Shuyin Xia,Guoyin Wang,Lei Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:PP: 1-21 被引量:16
标识
DOI:10.1109/tnnls.2025.3610435
摘要

State space model (SSM) is a mathematical model used to describe and analyze the behavior of dynamic systems. This model has witnessed numerous applications in several fields, including control theory, signal processing, economics, and machine learning. In the field of deep learning, SSMs are used to process sequence data, such as time series analysis, natural language processing (NLP), and video understanding. By mapping sequence data to state space, long-term dependencies in the data can be better captured. In particular, modern SSMs have shown strong representational capabilities in NLP, especially in long sequence modeling, while maintaining linear time complexity. In particular, based on the latest SSMs, Mamba merges time-varying parameters into SSMs toward efficient training and inference. Given its impressive efficiency and strong long-range dependency modeling capability, Mamba is expected to become a new AI architecture that may be capable of surpassing Transformer. Recently, a number of works attempt to study the potential of Mamba in various fields, such as general vision, multimodal learning, medical image analysis, and remote sensing image analysis, by extending Mamba from natural language domain to visual domain. To fully understand Mamba in the visual domain, we conduct a comprehensive survey and present a taxonomy study. This survey focuses on Mamba's application to a variety of visual tasks and data types, and discusses its predecessors, recent advances, and far-reaching impact on a wide range of domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光亮笑柳发布了新的文献求助10
刚刚
蒋美桥发布了新的文献求助10
刚刚
Lp发布了新的文献求助10
刚刚
刚刚
1秒前
4秒前
怕黑白亦发布了新的文献求助30
5秒前
5秒前
恒星的恒心完成签到 ,获得积分10
6秒前
与枫发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
Ava应助Traveller丁采纳,获得10
9秒前
兴奋迎彤完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
冯梦颖完成签到,获得积分10
10秒前
眯眯眼的谷冬完成签到 ,获得积分10
10秒前
有趣的银发布了新的文献求助10
11秒前
11秒前
配言发布了新的文献求助10
13秒前
下一周完成签到,获得积分10
13秒前
carnationli完成签到,获得积分10
13秒前
陆访文发布了新的文献求助10
13秒前
13秒前
轻松雁蓉发布了新的文献求助10
14秒前
听雨眠发布了新的文献求助10
14秒前
与枫完成签到,获得积分10
16秒前
是但求其爱完成签到,获得积分10
17秒前
熊二浪完成签到,获得积分10
17秒前
17秒前
Moo5_zzZ发布了新的文献求助10
18秒前
CodeCraft应助刘丰铭采纳,获得10
19秒前
5Cu驳回了丘比特应助
20秒前
斯文败类应助ldhtata采纳,获得10
21秒前
21秒前
23秒前
Traveller丁发布了新的文献求助10
23秒前
打打应助在在采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610111
求助须知:如何正确求助?哪些是违规求助? 4694594
关于积分的说明 14883542
捐赠科研通 4721206
什么是DOI,文献DOI怎么找? 2544999
邀请新用户注册赠送积分活动 1509911
关于科研通互助平台的介绍 1473039